IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921005717.html
   My bibliography  Save this article

Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization

Author

Listed:
  • Zhou, Yu
  • Li, Zhengshuo
  • Wang, Guangrui

Abstract

This paper suggests leveraging the reactive power range embedded in wind farms to improve safety and optimality during the power system reactive power optimization process. First, three typical reactive power range approaches are analysed, and a two-stage robust linear optimization-based reactive power range evaluation method is proposed. This method yields a reactive power range that can be leveraged by an upstream system operator while ensuring wind farm operational security against wind farm uncertainty. Simplified DistFlow equations are employed to balance computational accuracy and cost. Next, an uncertain reactive power optimization problem that involves the wind farm reactive power range is introduced, through which system operators ensure system-wide security and optimality in the base case and against any possible deviation caused by system-wide load uncertainty and uncertain renewable generation. Steady-state models of automatic generation control and local voltage control against deviations are captured. This uncertain reactive power optimization problem is recast as a deterministic optimization problem that is readily solvable. Case studies confirm that even with notable uncertainty, wind farms are competent reactive power resources that provide a considerable reactive power range.

Suggested Citation

  • Zhou, Yu & Li, Zhengshuo & Wang, Guangrui, 2021. "Study on leveraging wind farms' robust reactive power range for uncertain power system reactive power optimization," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005717
    DOI: 10.1016/j.apenergy.2021.117130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandhi, Oktoviano & Zhang, Wenjie & Rodríguez-Gallegos, Carlos D. & Verbois, Hadrien & Sun, Hongbin & Reindl, Thomas & Srinivasan, Dipti, 2020. "Local reactive power dispatch optimisation minimising global objectives," Applied Energy, Elsevier, vol. 262(C).
    2. Zhang, Wenjie & Gandhi, Oktoviano & Quan, Hao & Rodríguez-Gallegos, Carlos D. & Srinivasan, Dipti, 2018. "A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination," Applied Energy, Elsevier, vol. 229(C), pages 96-110.
    3. Xia, S.W. & Bu, S.Q. & Zhang, X. & Xu, Y. & Zhou, B. & Zhu, J.B., 2018. "Model reduction strategy of doubly-fed induction generator-based wind farms for power system small-signal rotor angle stability analysis," Applied Energy, Elsevier, vol. 222(C), pages 608-620.
    4. Zhang, Jian & Cui, Mingjian & He, Yigang, 2020. "Robustness and adaptability analysis for equivalent model of doubly fed induction generator wind farm using measured data," Applied Energy, Elsevier, vol. 261(C).
    5. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    6. Song, Zhanfeng & Xia, Changliang & Shi, Tingna, 2010. "Assessing transient response of DFIG based wind turbines during voltage dips regarding main flux saturation and rotor deep-bar effect," Applied Energy, Elsevier, vol. 87(10), pages 3283-3293, October.
    7. Wang, Shuai & Li, Bin & Li, Guanzheng & Yao, Bin & Wu, Jianzhong, 2021. "Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration," Applied Energy, Elsevier, vol. 292(C).
    8. Fang, Xin & Hodge, Bri-Mathias & Jiang, Huaiguang & Zhang, Yingchen, 2019. "Decentralized wind uncertainty management: Alternating direction method of multipliers based distributionally-robust chance constrained optimal power flow," Applied Energy, Elsevier, vol. 239(C), pages 938-947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utama, Christian & Meske, Christian & Schneider, Johannes & Ulbrich, Carolin, 2022. "Reactive power control in photovoltaic systems through (explainable) artificial intelligence," Applied Energy, Elsevier, vol. 328(C).
    2. Zhang, Zhaoyi & Shang, Lei & Liu, Chengxi & Lai, Qiupin & Jiang, Youjin, 2023. "Consensus-based distributed optimal power flow using gradient tracking technique for short-term power fluctuations," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong, Haoxiang & Lyu, Jing & Wang, Xiao & Zhang, Chen & Zhang, Ruifang & Cai, Xu, 2021. "Grey box aggregation modeling of wind farm for wideband oscillations analysis," Applied Energy, Elsevier, vol. 283(C).
    2. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    3. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    4. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    5. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    6. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    7. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    8. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    9. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    10. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    11. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    12. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    13. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    14. Jayesh Thaker & Robert Höller, 2023. "Evaluation of High Resolution WRF Solar," Energies, MDPI, vol. 16(8), pages 1-13, April.
    15. Boynuegri, A.R. & Vural, B. & Tascikaraoglu, A. & Uzunoglu, M. & Yumurtacı, R., 2012. "Voltage regulation capability of a prototype Static VAr Compensator for wind applications," Applied Energy, Elsevier, vol. 93(C), pages 422-431.
    16. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Anaya, Karim L. & Pollitt, Michael G., 2022. "A social cost benefit analysis for the procurement of reactive power: The case of Power Potential," Applied Energy, Elsevier, vol. 312(C).
    18. Xie, Xiangmin & Peng, Fei & Zhang, Yan, 2022. "A data-driven probabilistic harmonic power flow approach in power distribution systems with PV generations," Applied Energy, Elsevier, vol. 321(C).
    19. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Liu, Lu & Lian, Jijian, 2021. "Study on short-term optimal operation of cascade hydro-photovoltaic hybrid systems," Applied Energy, Elsevier, vol. 291(C).
    20. Mu, Yunfei & Xu, Yanze & Zhang, Jiarui & Wu, Zeqing & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2023. "A data-driven rolling optimization control approach for building energy systems that integrate virtual energy storage systems," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.