IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp872-883.html
   My bibliography  Save this article

Short-term wind power forecasting with an intermittency-trait-driven methodology

Author

Listed:
  • Ma, Yixiang
  • Yu, Lean
  • Zhang, Guoxing

Abstract

To improve the forecasting accuracy of short-term wind power, an intermittency-trait-driven methodology is proposed in this paper. In the proposed methodology, four main steps, i.e., intermittency-trait-driven data decomposition, intermittency-trait-driven mode reconstruction, intermittency-trait-driven component prediction and intermittency-trait-driven ensemble output, are involved. In particular, the selected distribution function driven by intermittency trait analysis is used to improve the decomposition model, so as to solve the end effect issue in the rolling decomposition. For illustration and verification, the wind power data with 15-min intervals is introduced as the sample data. Compared with the benchmark models, the root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of the proposed model is reduced by 22.357%, 26.457% and 23.828% on average, respectively. The results indicate that the proposed intermittency-trait-driven methodology outperforms all benchmark models in multi-step-ahead forecasting, which can provide valuable insights to effective wind power prediction.

Suggested Citation

  • Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:872-883
    DOI: 10.1016/j.renene.2022.08.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren & Liu, Jizhen, 2017. "Measurement and statistical analysis of wind speed intermittency," Energy, Elsevier, vol. 118(C), pages 632-643.
    2. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    3. Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
    4. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    5. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    6. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    7. Wu, Zhuochun & Xia, Xiangjie & Xiao, Liye & Liu, Yilin, 2020. "Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting," Applied Energy, Elsevier, vol. 261(C).
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    9. Ouyang, Tinghui & Huang, Heming & He, Yusen & Tang, Zhenhao, 2020. "Chaotic wind power time series prediction via switching data-driven modes," Renewable Energy, Elsevier, vol. 145(C), pages 270-281.
    10. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    11. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    12. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    13. Sommer, Benedikt & Pinson, Pierre & Messner, Jakob W. & Obst, David, 2021. "Online distributed learning in wind power forecasting," International Journal of Forecasting, Elsevier, vol. 37(1), pages 205-223.
    14. Wang, Gang & Jia, Ru & Liu, Jinhai & Zhang, Huaguang, 2020. "A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning," Renewable Energy, Elsevier, vol. 145(C), pages 2426-2434.
    15. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    16. Yang, Mao & Shi, Chaoyu & Liu, Huiyu, 2021. "Day-ahead wind power forecasting based on the clustering of equivalent power curves," Energy, Elsevier, vol. 218(C).
    17. Wang, Cong & Zhang, Hongli & Ma, Ping, 2020. "Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network," Applied Energy, Elsevier, vol. 259(C).
    18. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    19. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    20. Daniel Suchet & Adrien Jeantet & Thomas Elghozi & Zacharie Jehl, 2020. "Defining and Quantifying Intermittency in the Power Sector," Energies, MDPI, vol. 13(13), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
    3. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
    4. Wang, Huaqing & Tan, Zhongfu & Liang, Yan & Li, Fanqi & Zhang, Zheyu & Ju, Liwei, 2024. "A novel multi-layer stacking ensemble wind power prediction model under Tensorflow deep learning framework considering feature enhancement and data hierarchy processing," Energy, Elsevier, vol. 286(C).
    5. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
    6. Yixiang Ma & Lean Yu & Guoxing Zhang, 2022. "A Hybrid Short-Term Load Forecasting Model Based on a Multi-Trait-Driven Methodology and Secondary Decomposition," Energies, MDPI, vol. 15(16), pages 1-20, August.
    7. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    9. Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
    10. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).
    11. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    12. Duan, Jiandong & Wang, Peng & Ma, Wentao & Tian, Xuan & Fang, Shuai & Cheng, Yulin & Chang, Ying & Liu, Haofan, 2021. "Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network," Energy, Elsevier, vol. 214(C).
    13. Liu, Lei & Liu, Jicheng & Ye, Yu & Liu, Hui & Chen, Kun & Li, Dong & Dong, Xue & Sun, Mingzhai, 2023. "Ultra-short-term wind power forecasting based on deep Bayesian model with uncertainty," Renewable Energy, Elsevier, vol. 205(C), pages 598-607.
    14. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
    15. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    16. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    17. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    18. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    19. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    20. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:872-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.