IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp733-745.html
   My bibliography  Save this article

Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements

Author

Listed:
  • Barbón, A.
  • Sánchez-Rodríguez, J.A.
  • Bayón, L.
  • Barbón, N.

Abstract

This paper describes the details of the design of a small scale linear Fresnel reflector (SSLFR) applied to a daylighting system based on optical fiber bundles (OFBs). This study shows the influence of the SSLFR design parameters (mirror width, mirror length, reflector cavity height, and number of mirrors) and the parameters of the optical fiber. A new reflector cavity is designed, consisting of two right trapeziums. Each trapezium collects the incident solar irradiance of the mirrors located at each side of the central mirror. The reflector cavity has two focal points, located in the middle of the aperture of each trapezium. A MATLAB code was developed in order to obtain the optical efficiency of the new reflector cavity and numerical simulations are presented. Two SSLFR configurations, C1 and C2, are studied. C1 is the configuration used in large-scale LFRs and does not consider lateral movement of the OFBs, as is the case in configuration C2. Each of these configurations is analyzed considering the optimal length and longitudinal position of the OFB. Numerical simulations are presented for both configurations using the MATLAB environment. Power consumption based calculations are carried out using the lumen method and the potential electric energy saving is evaluated. The illumination levels obtained are then compared using the lighting design software DIAlux, a free software widely used as a planning tool by lighting designers. The results show a considerable electric energy saving with configuration C2, although configuration C1 also presents good energy savings.

Suggested Citation

  • Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:733-745
    DOI: 10.1016/j.apenergy.2017.12.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917317865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.12.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hraska, Jozef, 2015. "Chronobiological aspects of green buildings daylighting," Renewable Energy, Elsevier, vol. 73(C), pages 109-114.
    2. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    3. Zain-Ahmed, A. & Sopian, K. & Zainol Abidin, Z. & Othman, M.Y.H., 2002. "The availability of daylight from tropical skies—a case study of Malaysia," Renewable Energy, Elsevier, vol. 25(1), pages 21-30.
    4. Kim, Yeongmin & Jeong, Hae Jun & Kim, Wonsik & Chun, Wongee & Han, Hyun Joo & Lim, Sang Hoon, 2017. "A comparative performance analysis on daylighting for two different types of solar concentrators: Dish vs. Fresnel lens," Energy, Elsevier, vol. 137(C), pages 449-456.
    5. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    6. Barbón, A. & Barbón, N. & Bayón, L. & Otero, J.A., 2016. "Optimization of the length and position of the absorber tube in small-scale Linear Fresnel Concentrators," Renewable Energy, Elsevier, vol. 99(C), pages 986-995.
    7. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    8. Hafez, A.Z. & Soliman, Ahmed & El-Metwally, K.A. & Ismail, I.M., 2017. "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1019-1036.
    9. Lin, Haiyang & Wang, Qinxing & Wang, Yu & Liu, Yiling & Sun, Qie & Wennersten, Ronald, 2017. "The energy-saving potential of an office under different pricing mechanisms – Application of an agent-based model," Applied Energy, Elsevier, vol. 202(C), pages 248-258.
    10. Balaji, Shanmugapriya & Reddy, K.S. & Sundararajan, T., 2016. "Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors," Applied Energy, Elsevier, vol. 179(C), pages 1138-1151.
    11. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.
    12. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    13. Robledo, Luis & Soler, Alfonso, 2000. "Luminous efficacy of direct solar radiation for clear skies," Energy, Elsevier, vol. 25(8), pages 689-701.
    14. Ngoc Hai Vu & Seoyong Shin, 2016. "A Large Scale Daylighting System Based on a Stepped Thickness Waveguide," Energies, MDPI, vol. 9(2), pages 1-15, January.
    15. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    16. Wong, Irene & Yang, H.X., 2012. "Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system," Applied Energy, Elsevier, vol. 90(1), pages 225-232.
    17. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.
    18. Robledo, Luis & Soler, Alfonso, 2001. "Luminous efficacy of direct solar radiation for all sky types," Energy, Elsevier, vol. 26(7), pages 669-677.
    19. Han, Hyunjoo & Tai Kim, Jeong, 2010. "Application of high-density daylight for indoor illumination," Energy, Elsevier, vol. 35(6), pages 2654-2666.
    20. Cucumo, M. & De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2010. "Correlations of direct solar luminous efficacy for all sky, clear sky and intermediate sky conditions and comparisons with experimental data of five localities," Renewable Energy, Elsevier, vol. 35(10), pages 2143-2156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Pardellas & Pedro Fortuny Ayuso & Luis Bayón & Arsenio Barbón, 2023. "A New Two-Foci V-Trough Concentrator for Small-Scale Linear Fresnel Reflectors," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    2. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Jifeng Song & Bizuayehu Bogale Dessie & Longyu Gao, 2023. "Analysis and Comparison of Daylighting Technologies: Light Pipe, Optical Fiber, and Heliostat," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    4. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    5. Barbón, A. & Fernández-Rubiera, J.A. & Martínez-Valledor, L. & Pérez-Fernández, A. & Bayón, L., 2021. "Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements," Applied Energy, Elsevier, vol. 285(C).
    6. Janjai, S. & Prathumsit, J. & Buntoung, S. & Wattan, R. & Pattarapanitchai, S. & Masiri, I., 2014. "Modeling the luminous efficacy of direct and diffuse solar radiation using information on cloud, aerosol and water vapor in the tropics," Renewable Energy, Elsevier, vol. 66(C), pages 111-117.
    7. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    8. Li, Guiqiang & Xuan, Qingdong & Zhao, Xudong & Pei, Gang & Ji, Jie & Su, Yuehong, 2018. "A novel concentrating photovoltaic/daylighting control system: Optical simulation and preliminary experimental analysis," Applied Energy, Elsevier, vol. 228(C), pages 1362-1372.
    9. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    10. Robledo, L. & Soler, A., 2002. "A simple clear skies model for the luminous efficacy of diffuse solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 169-176.
    11. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    12. Li, Xiujie & Wei, Yeyan & Zhang, Junbin & Jin, Peng, 2019. "Design and analysis of an active daylight harvesting system for building," Renewable Energy, Elsevier, vol. 139(C), pages 670-678.
    13. Nasrollahi, Nazanin & Shokri, Elham, 2016. "Daylight illuminance in urban environments for visual comfort and energy performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 861-874.
    14. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    15. Song, Jifeng & Wu, Zhaoxuan & Wang, Juntao & Zhang, Kexin & Wang, Kai & Liu, Kunhao & Duan, Liqiang & Hou, Hongjuan, 2021. "Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches," Renewable Energy, Elsevier, vol. 180(C), pages 1391-1404.
    16. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    17. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Ayuso, P. Fortuny, 2020. "Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector," Renewable Energy, Elsevier, vol. 162(C), pages 43-54.
    18. Li, Danny H.W. & Lam, Tony N.T. & Cheung, K.L. & Tang, H.L., 2008. "An analysis of luminous efficacies under the CIE standard skies," Renewable Energy, Elsevier, vol. 33(11), pages 2357-2365.
    19. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    20. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:733-745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.