IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v90y2012i1p225-232.html
   My bibliography  Save this article

Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system

Author

Listed:
  • Wong, Irene
  • Yang, H.X.

Abstract

In metropolitan cities like Hong Kong where land value is high, highrise commercial and residential buildings with “central core” design are developed. The lift lobbies in the buildings are usually located in the centre of the building to free up peripheral areas to provide valuable exterior view. The lift lobbies have no window provisions and electric lighting is switched on for 24h continuously consuming non-renewable energy. Different types of light guides/light pipes have been proven to be capable to transfer daylight into deep floor plan during both clear sky and overcast periods. However, the thickness of light guide requires 3m headroom clearance for installation whilst the headroom of the highrise buildings is usually limited to 2.8m in order to build more storeys. In this research, a remote source lighting system (RSL) is introduced to illuminate the enclosed lift lobbies. The system composed of prismatic light pipe and optic fiber to address the problem of limited headroom. Simulation of the system was carried out and reported in the paper, indicating that this lighting system can solve the energy consumption problem in the lift lobby in terms of renewable energy use and natural lighting application. This research concentrates on highrise residential buildings.

Suggested Citation

  • Wong, Irene & Yang, H.X., 2012. "Introducing natural lighting into the enclosed lift lobbies of highrise buildings by remote source lighting system," Applied Energy, Elsevier, vol. 90(1), pages 225-232.
  • Handle: RePEc:eee:appene:v:90:y:2012:i:1:p:225-232
    DOI: 10.1016/j.apenergy.2011.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaoxiao & Liu, Xiangfeng, 2015. "Blue Star: The proposed energy efficient tall building in Chicago and vertical city strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 241-259.
    2. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    4. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    5. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
    6. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    7. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    8. Bangdi Zhou & Kaiyan He & Ziqian Chen & Shuiku Zhong, 2022. "Fixed Fiber Light Guide System with Concave Outlet Concentrators," Energies, MDPI, vol. 15(3), pages 1-16, January.
    9. Atthakorn Thongtha & Peeranat Laphom & Jiraphorn Mahawan, 2023. "Investigation of the Efficacy of Horizontal Hollow Light Tubes for Energy Conservation in Illuminating Buildings," Energies, MDPI, vol. 16(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:90:y:2012:i:1:p:225-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.