IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v137y2017icp449-456.html
   My bibliography  Save this article

A comparative performance analysis on daylighting for two different types of solar concentrators: Dish vs. Fresnel lens

Author

Listed:
  • Kim, Yeongmin
  • Jeong, Hae Jun
  • Kim, Wonsik
  • Chun, Wongee
  • Han, Hyun Joo
  • Lim, Sang Hoon

Abstract

This study introduces the experimental work done to analyze the performance of active daylighting systems, which consist of small individually operated solar concentrators. Each system is capable of precise solar tracking thanks to the double axis solar tracker designed and constructed for lightness and easy operation. A solar tracking algorithm was implemented with AVR based on both closed and open loop control algorithms. Two different types of solar concentrators (developed for the system) were tested to assess their photometric characteristics in collecting and delivering solar rays to a deep plan office space for better lighting. To measure illuminance at different times of the day, a number of photo sensors were installed on the task planes at a height of 85 cm above the floor. The luminance values on different walls (including task planes) were also measured at a regular interval of 30 min to assess their variation with time and solar altitude. These photometric data enabled a systematic performance evaluation of the systems employed in the present study. The experimental results demonstrated the applicability of the daylighting systems employed in this work in bringing natural daylight to the interior, especially, to those spaces too deep for conventional daylighting apertures.

Suggested Citation

  • Kim, Yeongmin & Jeong, Hae Jun & Kim, Wonsik & Chun, Wongee & Han, Hyun Joo & Lim, Sang Hoon, 2017. "A comparative performance analysis on daylighting for two different types of solar concentrators: Dish vs. Fresnel lens," Energy, Elsevier, vol. 137(C), pages 449-456.
  • Handle: RePEc:eee:energy:v:137:y:2017:i:c:p:449-456
    DOI: 10.1016/j.energy.2017.02.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cañada, J. & Utrillas, M.P. & Martinez-Lozano, J.A. & Pedrós, R. & Gómez-Amo, J.L. & Maj, A., 2007. "Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330–1100nm range," Renewable Energy, Elsevier, vol. 32(12), pages 2053-2068.
    2. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    3. Carlo Renno, 2021. "Experimental Comparison between Spherical and Refractive Optics in a Concentrating Photovoltaic System," Energies, MDPI, vol. 14(15), pages 1-15, July.
    4. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    5. Jifeng Song & Bizuayehu Bogale Dessie & Longyu Gao, 2023. "Analysis and Comparison of Daylighting Technologies: Light Pipe, Optical Fiber, and Heliostat," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    6. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberts, Frank & Yang, Siliang & Du, Hu & Yang, Rebecca, 2023. "Effect of semi-transparent a-Si PV glazing within double-skin façades on visual and energy performances under the UK climate condition," Renewable Energy, Elsevier, vol. 207(C), pages 601-610.
    2. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    3. Fathabadi, Hassan, 2016. "Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems," Applied Energy, Elsevier, vol. 173(C), pages 448-459.
    4. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    5. Abdelghani-Idrissi, M.A. & Khalfallaoui, S. & Seguin, D. & Vernières-Hassimi, L. & Leveneur, S., 2018. "Solar tracker for enhancement of the thermal efficiency of solar water heating system," Renewable Energy, Elsevier, vol. 119(C), pages 79-94.
    6. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    7. Badis Bakri & Hani Benguesmia & Ahmed Ketata & Slah Driss & Haythem Nasraoui & Zied Driss, 2024. "Enhancing Sustainable Development: Assessing a Solar Air Heater (SAH) Test Bench through Computational and Experimental Methods," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    8. Lobão, J.A. & Devezas, T. & Catalão, J.P.S., 2014. "Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment," Energy, Elsevier, vol. 65(C), pages 145-151.
    9. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    10. Ammar, M. & Chtourou, W. & Driss, Z. & Abid, M.S., 2011. "Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system," Energy, Elsevier, vol. 36(8), pages 5081-5093.
    11. Nardelli, Andrei & Deuschle, Eduardo & de Azevedo, Leticia Dalpaz & Pessoa, João Lorenço Novaes & Ghisi, Enedir, 2017. "Assessment of Light Emitting Diodes technology for general lighting: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 368-379.
    12. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    13. Anujin Bayasgalan & Yoo Shin Park & Seak Bai Koh & Sung-Yong Son, 2024. "Comprehensive Review of Building Energy Management Models: Grid-Interactive Efficient Building Perspective," Energies, MDPI, vol. 17(19), pages 1-25, September.
    14. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    15. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    16. Yan Zhao & Vince McDonell & Scott Samuelsen, 2022. "Residential Fuel Transition and Fuel Interchangeability in Current Self-Aspirating Combustion Applications: Historical Development and Future Expectations," Energies, MDPI, vol. 15(10), pages 1-50, May.
    17. Yilmaz, Saban & Riza Ozcalik, Hasan & Dogmus, Osman & Dincer, Furkan & Akgol, Oguzhan & Karaaslan, Muharrem, 2015. "Design of two axes sun tracking controller with analytically solar radiation calculations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 997-1005.
    18. Fathabadi, Hassan, 2016. "Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 485-494.
    19. Chen, Fangliang & Yin, Huiming, 2016. "Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel," Applied Energy, Elsevier, vol. 177(C), pages 271-284.
    20. Firat, C. & Beyene, A., 2012. "Comparison of direct and indirect PV power output using filters, lens, and fiber transport," Energy, Elsevier, vol. 41(1), pages 271-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:137:y:2017:i:c:p:449-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.