IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp1251-1265.html
   My bibliography  Save this article

Enabling resilient distributed power sharing in networked microgrids through software defined networking

Author

Listed:
  • Ren, Lingyu
  • Qin, Yanyuan
  • Li, Yan
  • Zhang, Peng
  • Wang, Bing
  • Luh, Peter B.
  • Han, Song
  • Orekan, Taofeek
  • Gong, Tao

Abstract

Networked Microgrids (NMGs) offer a new, more resilient alternative to traditional individual Microgrids (MGs). Even though networking existing microgrids presents clear advantages, the scalable and resilient communication and control infrastructure necessary for supporting this innovation does not yet exist. This paper addresses this challenge by developing a Software-Defined Networking (SDN) enabled architecture that can achieve fast power support among microgrids, transforming isolated local microgrids into integrated NMGs capable of achieving the desired resiliency, elasticity and efficiency. Equipped with a novel event-triggered communication scheme, the SDN-based architecture enables distributed power sharing among microgrids in both the transient period and the steady state, a capability that is unattainable using existing technologies. Extensive experiments on a cyber-physical Hardware-in-the-Loop (HIL) NMGs testbed have validated the effectiveness and efficiency of the SDN-enabled distributed power sharing method.

Suggested Citation

  • Ren, Lingyu & Qin, Yanyuan & Li, Yan & Zhang, Peng & Wang, Bing & Luh, Peter B. & Han, Song & Orekan, Taofeek & Gong, Tao, 2018. "Enabling resilient distributed power sharing in networked microgrids through software defined networking," Applied Energy, Elsevier, vol. 210(C), pages 1251-1265.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1251-1265
    DOI: 10.1016/j.apenergy.2017.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Xiandong & Wang, Yifei & Qin, Jianrong, 2013. "Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations," Applied Energy, Elsevier, vol. 112(C), pages 1475-1482.
    2. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    3. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    4. Li, Mengyu & Zhang, Xiongwen & Li, Guojun & Jiang, Chaoyang, 2016. "A feasibility study of microgrids for reducing energy use and GHG emissions in an industrial application," Applied Energy, Elsevier, vol. 176(C), pages 138-148.
    5. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    6. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    7. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    8. Haddadian, Hossein & Noroozian, Reza, 2017. "Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices," Applied Energy, Elsevier, vol. 185(P1), pages 650-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    2. Huang, Chunyi & Zhang, Mingzhi & Wang, Chengmin & Xie, Ning & Yuan, Zhao, 2022. "An interactive two-stage retail electricity market for microgrids with peer-to-peer flexibility trading," Applied Energy, Elsevier, vol. 320(C).
    3. Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
    4. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    5. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    6. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Saad, Ahmed A. & Faddel, Samy & Mohammed, Osama, 2019. "A secured distributed control system for future interconnected smart grids," Applied Energy, Elsevier, vol. 243(C), pages 57-70.
    8. Hussain, Akhtar & Bui, Van-Hai & Kim, Hak-Man, 2019. "Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience," Applied Energy, Elsevier, vol. 240(C), pages 56-72.
    9. Fouad Boutros & Moustapha Doumiati & Jean-Christophe Olivier & Imad Mougharbel & Hadi Kanaan, 2024. "Optimal Placement of Multiple Sources in a Mesh-Type DC Microgrid Using Dijkstra’s Algorithm," Energies, MDPI, vol. 17(14), pages 1-18, July.
    10. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    11. Dong, Chaoyu & Gao, Qingbin & Xiao, Qian & Yu, Xiaodan & Pekař, Libor & Jia, Hongjie, 2018. "Time-delay stability switching boundary determination for DC microgrid clusters with the distributed control framework," Applied Energy, Elsevier, vol. 228(C), pages 189-204.
    12. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    13. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    14. Li, Yan & Zhang, Peng & Yue, Meng, 2018. "Networked microgrid stability through distributed formal analysis," Applied Energy, Elsevier, vol. 228(C), pages 279-288.
    15. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    16. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    17. Carlos Roldán-Porta & Carlos Roldán-Blay & Guillermo Escrivá-Escrivá & Eduardo Quiles, 2019. "Improving the Sustainability of Self-Consumption with Cooperative DC Microgrids," Sustainability, MDPI, vol. 11(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    2. Li, Yan & Zhang, Peng & Yue, Meng, 2018. "Networked microgrid stability through distributed formal analysis," Applied Energy, Elsevier, vol. 228(C), pages 279-288.
    3. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    6. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    7. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    8. Xiao, Zhao-xia & Guerrero, Josep M. & Shuang, Jia & Sera, Dezso & Schaltz, Erik & Vásquez, Juan C., 2018. "Flat tie-line power scheduling control of grid-connected hybrid microgrids," Applied Energy, Elsevier, vol. 210(C), pages 786-799.
    9. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    10. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    11. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    12. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    13. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    14. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    15. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    16. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    17. Tang, Chong & Liu, Mingbo & Dai, Yue & Wang, Zhijun & Xie, Min, 2019. "Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin & Parastegari, Moein, 2017. "Optimal stochastic coordinated scheduling of proton exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen storage," Applied Energy, Elsevier, vol. 202(C), pages 308-322.
    19. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:1251-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.