IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p650-663.html
   My bibliography  Save this article

Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices

Author

Listed:
  • Haddadian, Hossein
  • Noroozian, Reza

Abstract

Clustering the large scale active distribution networks (ADNs) into a set of smaller microgrids (MGs) or multi-microgrids (MMGs)-based operation of ADNs can have several benefits for the utility, electric power consumers, and distributed generation (DG) owners such as easier control strategy, distributed control among MGs, load routing and transfer among MGs and reliability enhancement. This research proposes a novel program for optimal operation of ADNs based on the MMGs approach. Initially, the operation of ADNs was carried out by integrated management of all distributed energy resources (DERs) using probabilistic forward-backward load flow using Monte Carlo simulation (MCS) algorithm. In this stage, energy storage devices (ESDs) as one of the significant components of MG are sized and sited in ADN. In the second stage, the operation quality is scrutinized accurately by testing the possibility of MG construction in the modified ADN based on various technical criteria such as adequacy, efficiency, voltage profile, and reliability. This issue has not been addressed in the previous researches. Finally, the results of the proposed model are compared with conventional operation method in different scenarios by implementation on IEEE 33-bus ADN and an actual Portuguese distribution network using a powerful multi-objective optimization tool known as non-dominated genetic algorithm-II (NSGA-II).

Suggested Citation

  • Haddadian, Hossein & Noroozian, Reza, 2017. "Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices," Applied Energy, Elsevier, vol. 185(P1), pages 650-663.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:650-663
    DOI: 10.1016/j.apenergy.2016.10.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    3. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    4. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.
    5. Zhang, Ni & Yan, Yu & Su, Wencong, 2015. "A game-theoretic economic operation of residential distribution system with high participation of distributed electricity prosumers," Applied Energy, Elsevier, vol. 154(C), pages 471-479.
    6. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J. & Martín, F., 2016. "Optimal planning and operation of aggregated distributed energy resources with market participation," Applied Energy, Elsevier, vol. 182(C), pages 340-357.
    7. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    8. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    9. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    10. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    11. Bolívar Jaramillo, Lucas & Weidlich, Anke, 2016. "Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads," Applied Energy, Elsevier, vol. 169(C), pages 857-865.
    12. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "A practical multi-objective PSO algorithm for optimal operation management of distribution network with regard to fuel cell power plants," Renewable Energy, Elsevier, vol. 36(5), pages 1529-1544.
    13. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    2. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    3. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    4. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    5. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    6. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    7. Saeid Esmaeili & Amjad Anvari-Moghaddam & Shahram Jadid, 2019. "Optimal Operational Scheduling of Reconfigurable Multi-Microgrids Considering Energy Storage Systems," Energies, MDPI, vol. 12(9), pages 1-23, May.
    8. Xiao, Zhao-xia & Guerrero, Josep M. & Shuang, Jia & Sera, Dezso & Schaltz, Erik & Vásquez, Juan C., 2018. "Flat tie-line power scheduling control of grid-connected hybrid microgrids," Applied Energy, Elsevier, vol. 210(C), pages 786-799.
    9. Li, Yan & Zhang, Peng & Yue, Meng, 2018. "Networked microgrid stability through distributed formal analysis," Applied Energy, Elsevier, vol. 228(C), pages 279-288.
    10. Lin, Yanling & Bie, Zhaohong, 2018. "Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding," Applied Energy, Elsevier, vol. 210(C), pages 1266-1279.
    11. Salem Alkhalaf & Tomonobu Senjyu & Ayat Ali Saleh & Ashraf M. Hemeida & Al-Attar Ali Mohamed, 2019. "A MODA and MODE Comparison for Optimal Allocation of Distributed Generations with Different Load Levels," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    12. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    13. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    14. Makrygiorgou, Despoina I. & Alexandridis, Antonio T., 2018. "Distributed stabilizing modular control for stand-alone microgrids," Applied Energy, Elsevier, vol. 210(C), pages 925-935.
    15. Meena, Nand K. & Yang, Jin & Zacharis, Evan, 2019. "Optimisation framework for the design and operation of open-market urban and remote community microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Ren, Lingyu & Qin, Yanyuan & Li, Yan & Zhang, Peng & Wang, Bing & Luh, Peter B. & Han, Song & Orekan, Taofeek & Gong, Tao, 2018. "Enabling resilient distributed power sharing in networked microgrids through software defined networking," Applied Energy, Elsevier, vol. 210(C), pages 1251-1265.
    17. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    18. Xiao, Hao & Pei, Wei & Wu, Lei & Ma, Li & Ma, Tengfei & Hua, Weiqi, 2023. "A novel deep learning based probabilistic power flow method for Multi-Microgrids distribution system with incomplete network information," Applied Energy, Elsevier, vol. 335(C).
    19. Zhou, Yutian & Panteli, Mathaios & Moreno, Rodrigo & Mancarella, Pierluigi, 2018. "System-level assessment of reliability and resilience provision from microgrids," Applied Energy, Elsevier, vol. 230(C), pages 374-392.
    20. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    21. Thebelt, Alexander & Tsay, Calvin & Lee, Robert M. & Sudermann-Merx, Nathan & Walz, David & Tranter, Tom & Misener, Ruth, 2022. "Multi-objective constrained optimization for energy applications via tree ensembles," Applied Energy, Elsevier, vol. 306(PB).
    22. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    23. Mousavizadeh, Saeed & Haghifam, Mahmoud-Reza & Shariatkhah, Mohammad-Hossein, 2018. "A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources," Applied Energy, Elsevier, vol. 211(C), pages 443-460.
    24. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    25. Lazo, Joaquín & Watts, David, 2024. "Stochastic model for active distribution networks planning: An analysis of the combination of active network management schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    4. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    5. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    6. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    7. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    8. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    9. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    10. Ghatikar, Girish & Mashayekh, Salman & Stadler, Michael & Yin, Rongxin & Liu, Zhenhua, 2016. "Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions," Applied Energy, Elsevier, vol. 167(C), pages 432-448.
    11. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.
    12. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).
    13. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    14. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    16. Elsied, Moataz & Oukaour, Amrane & Youssef, Tarek & Gualous, Hamid & Mohammed, Osama, 2016. "An advanced real time energy management system for microgrids," Energy, Elsevier, vol. 114(C), pages 742-752.
    17. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.
    18. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    19. Kamel, Rashad M. & Nagasaka, Ken, 2015. "Effect of load type on standalone micro grid fault performance," Applied Energy, Elsevier, vol. 160(C), pages 532-540.
    20. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:650-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.