IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v222y2018icp383-395.html
   My bibliography  Save this article

A cooperative game approach for coordinating multi-microgrid operation within distribution systems

Author

Listed:
  • Du, Yan
  • Wang, Zhiwei
  • Liu, Guangyi
  • Chen, Xi
  • Yuan, Haoyu
  • Wei, Yanli
  • Li, Fangxing

Abstract

This paper focuses on simulating the potential cooperative behaviors of multiple grid-connected microgrids to achieve higher energy efficiency and operation economy. Motivated by the cooperative game theory, a group of individual microgrids is treated as one grand coalition with the aim of minimizing the total operation cost. Next, given that each microgrid operator is an independent and autonomous entity with the aim of maximum self-interest, a cost allocation method based on the concept of core in the cooperative game is implemented to ensure a fair cost share among microgrid coalition members, which guarantees the economic stability of the coalition. Considering the combinatorial explosive characteristic of the cost allocation problem, Benders Decomposition (BD) algorithm is applied to locate the core solution with computational efficiency. In addition, since microgrid coalition is formed at the distribution system level, network losses is not negligible. After considering network losses, the coalition operation model of multi-microgrid becomes an optimal power flow problem. A linearized optimal power flow for distribution (LOPF-D) model is applied instead of the conventional ACOPF model to reduce computation burden, meanwhile maintaining adequate accuracy. Case studies on standard IEEE systems demonstrate the advantages of multi-microgrid cooperation and the robustness of the formulated grand coalition. In addition, comparisons with the conventional ACOPF model verifies the high performance of the proposed LOPF-D model.

Suggested Citation

  • Du, Yan & Wang, Zhiwei & Liu, Guangyi & Chen, Xi & Yuan, Haoyu & Wei, Yanli & Li, Fangxing, 2018. "A cooperative game approach for coordinating multi-microgrid operation within distribution systems," Applied Energy, Elsevier, vol. 222(C), pages 383-395.
  • Handle: RePEc:eee:appene:v:222:y:2018:i:c:p:383-395
    DOI: 10.1016/j.apenergy.2018.03.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918304240
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holjevac, Ninoslav & Capuder, Tomislav & Zhang, Ning & Kuzle, Igor & Kang, Chongqing, 2017. "Corrective receding horizon scheduling of flexible distributed multi-energy microgrids," Applied Energy, Elsevier, vol. 207(C), pages 176-194.
    2. Kristiansen, Martin & Korpås, Magnus & Svendsen, Harald G., 2018. "A generic framework for power system flexibility analysis using cooperative game theory," Applied Energy, Elsevier, vol. 212(C), pages 223-232.
    3. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    4. Nikmehr, Nima & Najafi-Ravadanegh, Sajad & Khodaei, Amin, 2017. "Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty," Applied Energy, Elsevier, vol. 198(C), pages 267-279.
    5. Moutis, Panayiotis & Skarvelis-Kazakos, Spyros & Brucoli, Maria, 2016. "Decision tree aided planning and energy balancing of planned community microgrids," Applied Energy, Elsevier, vol. 161(C), pages 197-205.
    6. Bullich-Massagué, Eduard & Díaz-González, Francisco & Aragüés-Peñalba, Mònica & Girbau-Llistuella, Francesc & Olivella-Rosell, Pol & Sumper, Andreas, 2018. "Microgrid clustering architectures," Applied Energy, Elsevier, vol. 212(C), pages 340-361.
    7. Ren, Lingyu & Qin, Yanyuan & Li, Yan & Zhang, Peng & Wang, Bing & Luh, Peter B. & Han, Song & Orekan, Taofeek & Gong, Tao, 2018. "Enabling resilient distributed power sharing in networked microgrids through software defined networking," Applied Energy, Elsevier, vol. 210(C), pages 1251-1265.
    8. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    9. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    10. Zenginis, Ioannis & Vardakas, John S. & Echave, Cynthia & Morató, Moisés & Abadal, Jordi & Verikoukis, Christos V., 2017. "Cooperation in microgrids through power exchange: An optimal sizing and operation approach," Applied Energy, Elsevier, vol. 203(C), pages 972-981.
    11. Kou, Peng & Liang, Deliang & Gao, Lin, 2017. "Distributed EMPC of multiple microgrids for coordinated stochastic energy management," Applied Energy, Elsevier, vol. 185(P1), pages 939-952.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    2. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    3. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    4. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    5. Yang, Yanhong & Pei, Wei & Huo, Qunhai & Sun, Jianjun & Xu, Feng, 2018. "Coordinated planning method of multiple micro-grids and distribution network with flexible interconnection," Applied Energy, Elsevier, vol. 228(C), pages 2361-2374.
    6. Li, Yan & Zhang, Peng & Yue, Meng, 2018. "Networked microgrid stability through distributed formal analysis," Applied Energy, Elsevier, vol. 228(C), pages 279-288.
    7. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    8. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    9. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2018. "Cooperation between Two Micro-Grids Considering Power Exchange: An Optimal Sizing Approach Based on Collaborative Operation," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    12. Janko, Samantha A. & Johnson, Nathan G., 2018. "Scalable multi-agent microgrid negotiations for a transactive energy market," Applied Energy, Elsevier, vol. 229(C), pages 715-727.
    13. Ezenwa Udoha & Saptarshi Das & Mohammad Abusara, 2024. "Centralised Control and Energy Management of Multiple Interconnected Standalone AC Microgrids," Energies, MDPI, vol. 17(20), pages 1-26, October.
    14. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    15. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    16. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    17. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    18. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    19. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    20. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:383-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.