IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v102y2017ipap170-177.html
   My bibliography  Save this article

Bioenergy potential from crop residue biomass in Araucania Region of Chile

Author

Listed:
  • Román-Figueroa, Celián
  • Montenegro, Nicole
  • Paneque, Manuel

Abstract

The volatility of fossil fuels prices, air pollution and climate change, have led many countries turning to renewable resources of energy, especially biomass, for production of heat and electricity. Residual biomass fuels used in the production of heat and electricity are wheat, oat and barley straw, corn stover and wood chips from forest residuals and the wood industry. The focus of this study was to estimate how much sustainably removable residue from wheat straw there was in Araucania Region of Chile and how much electrical energy could be produced. The methodology used for estimating wheat straw residual was based upon the relationship between unused post-harvest biomass, marketable biomass, and volume and potential annually available. Results of this study indicate an annual average production of over 0,622 million tons of wheat straw in Araucania Region. Quilquén district is the one with the most production, with 0,27 million tons of wheat straw. Technical potential of wheat straw, per generation from Quilquén, in a plant of 5 MWth generation capacity, is of 3.17 MWel with the technologies of cogeneration through fluidized bed combustion and 4.89 MWel with the technologies of turbine power generation, and the fluidized bed gasifiers and combined gas and steam.

Suggested Citation

  • Román-Figueroa, Celián & Montenegro, Nicole & Paneque, Manuel, 2017. "Bioenergy potential from crop residue biomass in Araucania Region of Chile," Renewable Energy, Elsevier, vol. 102(PA), pages 170-177.
  • Handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:170-177
    DOI: 10.1016/j.renene.2016.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Jaswinder, 2015. "Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 286-297.
    2. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(4), pages 1-27, April.
    3. Yang, Jin & Chen, Bin, 2014. "Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective," Applied Energy, Elsevier, vol. 122(C), pages 269-279.
    4. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    5. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "Correction: The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(6), pages 1-2, June.
    6. Claudio Agostini & Shahriyar Nasirov & Carlos Silva, 2015. "Investors perspectives on barriers to renewables deployment in Chile," Working Papers wp_044, Adolfo Ibáñez University, School of Government.
    7. Gebremedhin, A. & Karlsson, B. & Björnfot, K., 2009. "Sustainable energy system – A case study from Chile," Renewable Energy, Elsevier, vol. 34(5), pages 1241-1244.
    8. Lim, Mook Tzeng & Alimuddin, Zainal, 2008. "Bubbling fluidized bed biomass gasification—Performance, process findings and energy analysis," Renewable Energy, Elsevier, vol. 33(10), pages 2339-2343.
    9. Gustavsson, Christer & Hulteberg, Christian, 2016. "Co-production of gasification based biofuels in existing combined heat and power plants – Analysis of production capacity and integration potential," Energy, Elsevier, vol. 111(C), pages 830-840.
    10. de Jong, Wiebren & Andries, Jans & Hein, Klaus R.G., 1999. "Coal/biomass co-gasification in a pressurised fluidised bed reactor," Renewable Energy, Elsevier, vol. 16(1), pages 1110-1113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    2. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
    4. Martínez-Guido, Sergio Iván & Ríos-Badrán, Inés María & Gutiérrez-Antonio, Claudia & Ponce-Ortega, José María, 2019. "Strategic planning for the use of waste biomass pellets in Mexican power plants," Renewable Energy, Elsevier, vol. 130(C), pages 622-632.
    5. Zhang, Jiaqi & Li, Yu'e & Cai, Andong & Oosterveer, Peter & Greene, Mary & Wang, Bin, 2023. "Greenhouse gas reduction through crop residue-based bioenergy: A meta-analysis of reduction efficiency and abatement costs of various products," Energy, Elsevier, vol. 270(C).
    6. Silva-Martínez, Rodolfo Daniel & Sanches-Pereira, Alessandro & Ortiz, Willington & Gómez Galindo, Maria Fernanda & Coelho, Suani Teixeira, 2020. "The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities," Renewable Energy, Elsevier, vol. 156(C), pages 509-525.
    7. Paredes, B.M. & Paredes, J.P. & García, R., 2023. "Integration of biocoal in distributed energy systems: A potential case study in the Spanish coal-mining regions," Energy, Elsevier, vol. 263(PC).
    8. Fabián Almonacid, 2018. "Bioenergy in an Agroforestry Economy under Crisis: Complement and Conflict. La Araucanía, Chile, 1990–2016," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    9. Róger Moya & Carolina Tenorio & Gloria Oporto, 2019. "Short Rotation Wood Crops in Latin American: A Review on Status and Potential Uses as Biofuel," Energies, MDPI, vol. 12(4), pages 1-20, February.
    10. Rodríguez-Monroy, Carlos & Mármol-Acitores, Gloria & Nilsson-Cifuentes, Gabriel, 2018. "Electricity generation in Chile using non-conventional renewable energy sources – A focus on biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 937-945.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    2. Vincenzo Dovì & Antonella Battaglini, 2015. "Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 8(12), pages 1-8, November.
    3. Cristian Mardones, 2021. "Analysis on complementarity between a CO2 tax and an emissions trading system to reduce industrial emissions in Chile," Energy & Environment, , vol. 32(5), pages 820-833, August.
    4. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.
    5. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    6. Amigo, Pía & Cea-Echenique, Sebastián & Feijoo, Felipe, 2021. "A two stage cap-and-trade model with allowance re-trading and capacity investment: The case of the Chilean NDC targets," Energy, Elsevier, vol. 224(C).
    7. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    8. Jeffrey Walters & Jessica Kaminsky & Lawrence Gottschamer, 2018. "A Systems Analysis of Factors Influencing Household Solar PV Adoption in Santiago, Chile," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    9. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2018. "Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach," Energy Economics, Elsevier, vol. 76(C), pages 439-456.
    10. Mardones, Cristian & García, Catalina, 2020. "Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants," Energy, Elsevier, vol. 206(C).
    11. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    12. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    13. Zhang, Hailing & Liu, Changxin & Wang, Can, 2021. "Extreme climate events and economic impacts in China: A CGE analysis with a new damage function in IAM," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    14. Ye Duan & Nan Li & Hailin Mu & Shusen Gui, 2017. "Research on CO 2 Emission Reduction Mechanism of China’s Iron and Steel Industry under Various Emission Reduction Policies," Energies, MDPI, vol. 10(12), pages 1-24, December.
    15. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    16. Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
    17. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    18. Steffen, Bjarne, 2018. "The importance of project finance for renewable energy projects," Energy Economics, Elsevier, vol. 69(C), pages 280-294.
    19. Schulz, Christopher & Saklani, Udisha, 2021. "The future of hydropower development in Nepal: Views from the private sector," Renewable Energy, Elsevier, vol. 179(C), pages 1578-1588.
    20. Nikolaos E. Koltsaklis & Athanasios S. Dagoumas, 2021. "A power system scheduling model with carbon intensity and ramping capacity constraints," Operational Research, Springer, vol. 21(1), pages 647-687, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:170-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.