IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp12-24.html
   My bibliography  Save this article

Combustion performance of an adjustable fuel feeding combustor under off-design conditions for a micro-gas turbine

Author

Listed:
  • Xing, Chang
  • Liu, Li
  • Qiu, Penghua
  • Shen, Wenkai
  • Lyu, Yajin
  • Zhang, Zhuo
  • Wang, Hui
  • Wu, Shaohua
  • Qin, Yukun

Abstract

To respond to off-design operation of the micro-gas turbines, this research proposed an adjustable fuel feeding combustor (AFFC). The AFFC employed a main fuel distribution device and an active control method called the adjustable fuel feeding method (AFFM). Through the main fuel distribution device, the AFFC can switch various groups of working main fuel tubes (MFTs), ultimately achieving the AFFM. Each group has a different symmetrical distribution feature of working MFTs. Based on these features, the AFFM characteristic number (U) has a unique calculation value for the AFFM at each group, and particularly, it was entirely different from the values of U for the AFFM at the other groups. In this research, four different working MFT groups were presented, and the values of U were calculated to be 0.143, 0.333, 0.429 and 1 for the AFFM at each group, respectively. As U changes, the AFFC combustion performance was investigated numerically at various combustor inlet air temperatures (T3) of 600, 700, 800, 900 and 1000 K. Moreover, the CFD method applicability was verified by the experimental data. The results indicate that at different T3, NO emission has various trends with the rising U due to the coupling influences of the fuel flow and fuel jet velocity of each working MFT, while CO emission and combustion efficiency are only affected by the AFFM at the low T3 of 600 K. The outlet temperature distribution factor keeps growing, and the total pressure recover factor remains almost the same as U rises.

Suggested Citation

  • Xing, Chang & Liu, Li & Qiu, Penghua & Shen, Wenkai & Lyu, Yajin & Zhang, Zhuo & Wang, Hui & Wu, Shaohua & Qin, Yukun, 2017. "Combustion performance of an adjustable fuel feeding combustor under off-design conditions for a micro-gas turbine," Applied Energy, Elsevier, vol. 208(C), pages 12-24.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:12-24
    DOI: 10.1016/j.apenergy.2017.10.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferrari, Mario L. & Sorce, Alessandro & Pascenti, Matteo & Massardo, Aristide F., 2011. "Recuperator dynamic performance: Experimental investigation with a microgas turbine test rig," Applied Energy, Elsevier, vol. 88(12), pages 5090-5096.
    2. Wang, Qiuwang & Zeng, Min & Ma, Ting & Du, Xueping & Yang, Jianfeng, 2014. "Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization," Applied Energy, Elsevier, vol. 135(C), pages 748-777.
    3. Han, Wei & Chen, Qiang & Lin, Ru-mou & Jin, Hong-guang, 2015. "Assessment of off-design performance of a small-scale combined cooling and power system using an alternative operating strategy for gas turbine," Applied Energy, Elsevier, vol. 138(C), pages 160-168.
    4. Xiao, Gang & Yang, Tianfeng & Liu, Huanlei & Ni, Dong & Ferrari, Mario Luigi & Li, Mingchun & Luo, Zhongyang & Cen, Kefa & Ni, Mingjiang, 2017. "Recuperators for micro gas turbines: A review," Applied Energy, Elsevier, vol. 197(C), pages 83-99.
    5. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.
    6. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
    7. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    8. Zornek, T. & Monz, T. & Aigner, M., 2015. "Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels," Applied Energy, Elsevier, vol. 159(C), pages 276-284.
    9. Laera, D. & Campa, G. & Camporeale, S.M., 2017. "A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors," Applied Energy, Elsevier, vol. 187(C), pages 216-227.
    10. Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.
    11. Thu, Kyaw & Saha, Bidyut Baran & Chua, Kian Jon & Bui, Thuan Duc, 2016. "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications," Applied Energy, Elsevier, vol. 178(C), pages 600-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Lingjie & Tang, Aikun & Cai, Tao & Tenkolu, Getachew Alemu, 2024. "Experimental analysis and multi-objective optimization of flame dynamics and combustion performance in methane-fueled slit-type combustors," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chengyu & Gümmer, Volker, 2020. "Multi-objective optimization and system evaluation of recuperated helicopter turboshaft engines," Energy, Elsevier, vol. 191(C).
    2. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    3. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    4. De Paepe, Ward & Pappa, Alessio & Montero Carrero, Marina & Bricteux, Laurent & Contino, Francesco, 2020. "Reducing waste heat to the minimum: Thermodynamic assessment of the M-power cycle concept applied to micro Gas Turbines," Applied Energy, Elsevier, vol. 279(C).
    5. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    6. Cai, Jun & Huai, Xiulan & Xi, Wenxuan, 2018. "An optimal design approach for the annular involute-profile cross wavy primary surface recuperator in microturbine and an application case study," Energy, Elsevier, vol. 153(C), pages 80-89.
    7. Tilocca, Giuseppe & Sánchez, David & Torres-García, Miguel, 2024. "Applying the root cause analysis methodology to study the lack of market success of micro gas turbine systems," Applied Energy, Elsevier, vol. 360(C).
    8. Chen, W.D. & Chua, K.J., 2021. "Energy performance analysis and optimization of a coupled adsorption and absorption cascade refrigeration system," Applied Energy, Elsevier, vol. 301(C).
    9. Kardaś, Dariusz & Polesek-Karczewska, Sylwia & Turzyński, Tomasz & Wardach-Święcicka, Izabela & Hercel, Paulina & Szymborski, Jakub & Heda, Łukasz, 2023. "Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system," Energy, Elsevier, vol. 282(C).
    10. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    11. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    12. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    13. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    14. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    15. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    17. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    18. Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
    19. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    20. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:12-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.