IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp288-297.html
   My bibliography  Save this article

Current status of distributed energy system in China

Author

Listed:
  • Han, Jie
  • Ouyang, Leixin
  • Xu, Yuzhen
  • Zeng, Rong
  • Kang, Shushuo
  • Zhang, Guoqiang

Abstract

Due to its promising benefits in energy and environment, distributed energy system (DES) has increasingly attracted extensive attention worldwide. The application of DES has been increased rapidly in recent years with the supportive government policies and financial incentives. Therefore, it is necessary to systematically summarize and analyze the development status of DES in China. This paper not only presents researches, applications and policies, but provides some relevant suggestion and prospects on DES of China. DES especially the hybrid energy system that gas-fired combined cooling, heating and power (CCHP) with renewable energy (solar and wind) will become the mainstream of future energy supply technologies in China. The paper will be helpful for international stakeholders in energy field to have better understanding on the progress of DES in China, which will benefit them in two aspects: one is that the Chinese situation will be a reference for their own countries or regions to develop energy policy and technology regarding DES, another is that they may be helped to find opportunities in Chinese market, while to contribute to Chinese DES development.

Suggested Citation

  • Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:288-297
    DOI: 10.1016/j.rser.2015.10.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    2. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    3. Wang, Jiangfeng & Dai, Yiping & Gao, Lin & Ma, Shaolin, 2009. "A new combined cooling, heating and power system driven by solar energy," Renewable Energy, Elsevier, vol. 34(12), pages 2780-2788.
    4. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q., 2014. "A novel operation strategy for CCHP systems based on minimum distance," Applied Energy, Elsevier, vol. 128(C), pages 325-335.
    5. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    6. Liu, Mingxi & Shi, Yang & Fang, Fang, 2013. "Optimal power flow and PGU capacity of CCHP systems using a matrix modeling approach," Applied Energy, Elsevier, vol. 102(C), pages 794-802.
    7. Ruan, Yingjun & Liu, Qingrong & Zhou, Weiguo & Firestone, Ryan & Gao, Weijun & Watanabe, Toshiyuki, 2009. "Optimal option of distributed generation technologies for various commercial buildings," Applied Energy, Elsevier, vol. 86(9), pages 1641-1653, September.
    8. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhang, Xu-Tao & Shi, Guo-Hua, 2008. "Integrated evaluation of distributed triple-generation systems using improved grey incidence approach," Energy, Elsevier, vol. 33(9), pages 1427-1437.
    9. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    10. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    11. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    12. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Shi, Guo-Hua & Zhang, Xu-Tao, 2008. "A fuzzy multi-criteria decision-making model for trigeneration system," Energy Policy, Elsevier, vol. 36(10), pages 3823-3832, October.
    13. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    14. Wang, Jiangjiang & Zhai, Zhiqiang John & Zhang, Chunfa & Jing, Youyin, 2010. "Environmental impact analysis of BCHP system in different climate zones in China," Energy, Elsevier, vol. 35(10), pages 4208-4216.
    15. Lian, Z.T. & Chua, K.J. & Chou, S.K., 2010. "A thermoeconomic analysis of biomass energy for trigeneration," Applied Energy, Elsevier, vol. 87(1), pages 84-95, January.
    16. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    17. Wu, J.Y. & Wang, J.L. & Li, S. & Wang, R.Z., 2014. "Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller," Energy, Elsevier, vol. 68(C), pages 444-453.
    18. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    19. Fang, Fang & Wei, Le & Liu, Jizhen & Zhang, Jianhua & Hou, Guolian, 2012. "Complementary configuration and operation of a CCHP-ORC system," Energy, Elsevier, vol. 46(1), pages 211-220.
    20. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    21. Cao, Jiacong, 2009. "Evaluation of retrofitting gas-fired cooling and heating systems into BCHP using design optimization," Energy Policy, Elsevier, vol. 37(6), pages 2368-2374, June.
    22. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    23. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    24. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    25. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    26. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    27. Li, Yajun & Xia, Yan, 2013. "DES/CCHP: The best utilization mode of natural gas for China’s low carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 477-483.
    28. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun & Wu, Qiong, 2011. "Promotion of energy conservation in developing countries through the combination of ESCO and CDM: A case study of introducing distributed energy resources into Chinese urban areas," Energy Policy, Elsevier, vol. 39(12), pages 8125-8136.
    29. Abdullah, M.A. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "Sustainable energy system design with distributed renewable resources considering economic, environmental and uncertainty aspects," Renewable Energy, Elsevier, vol. 78(C), pages 165-172.
    30. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun, 2012. "Optimal option of distributed energy systems for building complexes in different climate zones in China," Applied Energy, Elsevier, vol. 91(1), pages 156-165.
    31. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    32. Hao, Xiaoli & Zhang, Guoqiang & Chen, Youming, 2007. "Role of BCHP in energy and environmental sustainable development and its prospects in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1827-1842, October.
    33. Deng, Jian & Wang, Ruzhu & Wu, Jingyi & Han, Guyong & Wu, Dawei & Li, Sheng, 2008. "Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics," Energy, Elsevier, vol. 33(9), pages 1417-1426.
    34. Wu, Jing-yi & Wang, Jia-long & Li, Sheng, 2012. "Multi-objective optimal operation strategy study of micro-CCHP system," Energy, Elsevier, vol. 48(1), pages 472-483.
    35. Wang, Xiaonan & Palazoglu, Ahmet & El-Farra, Nael H., 2015. "Operational optimization and demand response of hybrid renewable energy systems," Applied Energy, Elsevier, vol. 143(C), pages 324-335.
    36. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    37. Wang, Jiang-Jiang & Xu, Zi-Long & Jin, Hong-Guang & Shi, Guo-hua & Fu, Chao & Yang, Kun, 2014. "Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 71(C), pages 572-583.
    38. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Xutao & Zhang, Chunfa, 2011. "Sensitivity analysis of optimal model on building cooling heating and power system," Applied Energy, Elsevier, vol. 88(12), pages 5143-5152.
    39. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources," Energy Policy, Elsevier, vol. 42(C), pages 286-296.
    40. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    41. Xu, Jianzhong & Sui, Jun & Li, Bingyu & Yang, Minlin, 2010. "Research, development and the prospect of combined cooling, heating, and power systems," Energy, Elsevier, vol. 35(11), pages 4361-4367.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    2. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    3. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    4. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    5. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
    6. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    7. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    8. Wang, Jiang-Jiang & Fu, Chao & Yang, Kun & Zhang, Xu-Tao & Shi, Guo-hua & Zhai, John, 2013. "Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system," Energy, Elsevier, vol. 61(C), pages 531-540.
    9. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    10. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
    11. Yan, Bofeng & Xue, Song & Li, Yuanfei & Duan, Jinhui & Zeng, Ming, 2016. "Gas-fired combined cooling, heating and power (CCHP) in Beijing: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 118-131.
    12. Wang, Jiang-Jiang & Xu, Zi-Long & Jin, Hong-Guang & Shi, Guo-hua & Fu, Chao & Yang, Kun, 2014. "Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 71(C), pages 572-583.
    13. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    14. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    15. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    16. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    17. Lizhi Zhang & Fan Li & Bo Sun & Chenghui Zhang, 2019. "Integrated Optimization Design of Combined Cooling, Heating, and Power System Coupled with Solar and Biomass Energy," Energies, MDPI, vol. 12(4), pages 1-21, February.
    18. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    19. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    20. Wencong Huang & Yufang Chang & Youxin Yuan, 2019. "Complementary Configuration and Optimal Energy Flow of CCHP-ORC Systems Using a Matrix Modeling Approach," Complexity, Hindawi, vol. 2019, pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:288-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.