IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031530.html
   My bibliography  Save this article

Optimizing passive energy savings in rural self-built houses: Integrating phase change materials across China's climate zones

Author

Listed:
  • Li, Weilin
  • Li, Rufei
  • Sui, Wenhai
  • Liu, Changhai
  • Yang, Liu

Abstract

The energy consumption of rural residential buildings in China is increasing, and the integration of phase change materials (PCMs) has emerged as an effective strategy to mitigate building energy use and carbon emissions. Given China's diverse climate zones and the varying construction forms of rural self-built houses (RSHs), the efficacy of PCM applications varies significantly across regions. This study presents a comprehensive investigation into passive energy savings using PCMs in RSHs across various climate zones. We investigate the energy saving potential and thermal comfort effects of installing PCMs with varying phase change temperatures and thicknesses at different laying positions in representative buildings from each climate zone. The results indicate that the optimal phase change temperatures in different regions closely align with the outdoor average temperatures during the application season. When the optimal phase change temperatures and appropriate thicknesses of PCM are applied, cost-effective energy savings are consistently achieved in building roofing across regions, with the most significant effects observed in the Severe Cold region, where the uncomfortable degree hours reduction rate (φUDH) exceeds 90 %.

Suggested Citation

  • Li, Weilin & Li, Rufei & Sui, Wenhai & Liu, Changhai & Yang, Liu, 2024. "Optimizing passive energy savings in rural self-built houses: Integrating phase change materials across China's climate zones," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031530
    DOI: 10.1016/j.energy.2024.133377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Ji Hun & Berardi, Umberto & Chang, Seong Jin & Wi, Seunghwan & Kang, Yujin & Kim, Sumin, 2021. "Energy retrofit of PCM-applied apartment buildings considering building orientation and height," Energy, Elsevier, vol. 222(C).
    2. Soares, N. & Matias, T. & Durães, L. & Simões, P.N. & Costa, J.J., 2023. "Thermophysical characterization of paraffin-based PCMs for low temperature thermal energy storage applications for buildings," Energy, Elsevier, vol. 269(C).
    3. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    4. Zhang, Yuan & Jiang, Weixue & Song, Jinwei & Xu, Li & Li, Shengcai & Hu, Lantian, 2023. "A parametric model on thermal evaluation of building envelopes containing phase change material," Applied Energy, Elsevier, vol. 331(C).
    5. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Modelling analysis and performance evaluation of a novel hybrid CdTe-PCM PV glass module for building envelope application," Energy, Elsevier, vol. 284(C).
    6. Ke, Wei & Ji, Jie & Zhang, Chengyan & Song, Zhiying & Wang, Chuyao & Xie, Hao & Tian, Xinyi, 2024. "Performance analysis of a novel hybrid CdTe-PCM multi-layer ventilated window system for building application: An experimental and numerical study," Energy, Elsevier, vol. 293(C).
    7. Devaux, Paul & Farid, Mohammed Mehdi, 2017. "Benefits of PCM underfloor heating with PCM wallboards for space heating in winter," Applied Energy, Elsevier, vol. 191(C), pages 593-602.
    8. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Cabeza, Luisa F., 2017. "Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings," Applied Energy, Elsevier, vol. 202(C), pages 420-434.
    9. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach," Applied Energy, Elsevier, vol. 207(C), pages 654-664.
    10. Pirasaci, Tolga & Sunol, Aydin, 2024. "Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey," Energy, Elsevier, vol. 292(C).
    11. Mohseni, Ehsan & Tang, Waiching, 2021. "Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM," Renewable Energy, Elsevier, vol. 168(C), pages 865-877.
    12. Rathore, Pushpendra Kumar Singh & Shukla, Shailendra Kumar, 2020. "An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings," Renewable Energy, Elsevier, vol. 149(C), pages 1300-1313.
    13. Xiao, Yuling & Zhang, Tao & Liu, Zihao & Fei, Fan & Fukuda, Hiroatsu, 2023. "Optimizing energy efficiency in HSCW buildings in China through temperature-controlled PCM Trombe wall system," Energy, Elsevier, vol. 278(PB).
    14. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    15. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    16. Zhou, Dan & Eames, Philip, 2019. "Phase Change Material Wallboard (PCMW) melting temperature optimisation for passive indoor temperature control," Renewable Energy, Elsevier, vol. 139(C), pages 507-514.
    17. Tao, Jialu & Luan, Jingde & Liu, Yue & Qu, Daoyu & Yan, Zheng & Ke, Xin, 2022. "Technology development and application prospects of organic-based phase change materials: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adilkhanova, Indira & Memon, Shazim Ali & Kim, Jong & Sheriyev, Almas, 2021. "A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime," Energy, Elsevier, vol. 217(C).
    2. Bimaganbetova, Madina & Memon, Shazim Ali & Sheriyev, Almas, 2020. "Performance evaluation of phase change materials suitable for cities representing the whole tropical savanna climate region," Renewable Energy, Elsevier, vol. 148(C), pages 402-416.
    3. Mohseni, Ehsan & Tang, Waiching, 2021. "Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM," Renewable Energy, Elsevier, vol. 168(C), pages 865-877.
    4. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    5. Al-Yasiri, Qudama & Szabó, Márta, 2022. "Energetic and thermal comfort assessment of phase change material passively incorporated building envelope in severe hot Climate: An experimental study," Applied Energy, Elsevier, vol. 314(C).
    6. Fan, Zhixuan & Jiang, Lina & Zhao, Yunchao & Gao, Yafeng & Bai, Xianjin & Dong, Shiqian, 2024. "Integrating interlayer ventilation into phase change walls: Comprehensive performance and optimization in summer," Energy, Elsevier, vol. 307(C).
    7. Lamrani, B. & Johannes, K. & Kuznik, F., 2021. "Phase change materials integrated into building walls: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Liu, Zu-An & Hou, Jiawen & Chen, Yu & Liu, Zaiqiang & Zhang, Tao & Zeng, Qian & Dewancker, Bart Julien & Meng, Xi & Jiang, Guanzhao, 2023. "Effectiveness assessment of different kinds/configurations of phase-change materials (PCM) for improving the thermal performance of lightweight building walls in summer and winter," Renewable Energy, Elsevier, vol. 202(C), pages 721-735.
    9. Zhou, Shiqiang & Song, Mengjie & Shan, Kui & Razaqpur, A. Ghani & Huang, Jinhui Jeanne, 2024. "Parametric and optimization analyses of a dynamic trombe wall incorporating PCM to save heating energy under cold climate zones," Renewable Energy, Elsevier, vol. 237(PA).
    10. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    11. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    12. Lee, Haksung & Ozaki, Akihito, 2018. "Sensitivity analysis for optimization of renewable-energy-based air-circulation-type temperature-control system," Applied Energy, Elsevier, vol. 230(C), pages 317-329.
    13. Saikia, Pranaynil & Pancholi, Marmik & Sood, Divyanshu & Rakshit, Dibakar, 2020. "Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate," Energy, Elsevier, vol. 197(C).
    14. Nazir, Kashif & Memon, Shazim Ali & Saurbayeva, Assemgul, 2024. "A novel framework for developing a machine learning-based forecasting model using multi-stage sensitivity analysis to predict the energy consumption of PCM-integrated building," Applied Energy, Elsevier, vol. 376(PA).
    15. Pirasaci, Tolga, 2020. "Investigation of phase state and heat storage form of the phase change material (PCM) layer integrated into the exterior walls of the residential-apartment during heating season," Energy, Elsevier, vol. 207(C).
    16. Kenzhekhanov, Sultan & Memon, Shazim Ali & Adilkhanova, Indira, 2020. "Quantitative evaluation of thermal performance and energy saving potential of the building integrated with PCM in a subarctic climate," Energy, Elsevier, vol. 192(C).
    17. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    18. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    19. Javad Mohammadpour & Ann Lee & Victoria Timchenko & Robert Taylor, 2022. "Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis," Energies, MDPI, vol. 15(9), pages 1-14, May.
    20. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.