IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp194-206.html
   My bibliography  Save this article

An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China

Author

Listed:
  • Zhang, Shuai
  • Liu, Linlin
  • Zhang, Lei
  • Zhuang, Yu
  • Du, Jian

Abstract

In recent years, several strategies have been developed and adopted in a bid to diminish the carbon dioxide (CO2) released into the atmosphere. Carbon capture, utilization and storage (CCUS) system is one of the options. In this paper, we develop a CCUS supply chain superstructure by introducing more comprehensive transportation routes as well as the resultant system deployment schemes. A mixed integer linear programming (MILP) model is proposed to optimize the strategic CCUS deployment in Northeast China by making simultaneous selection of emission sources, capture facilitates, CO2 pipeline, intermediate transportation sites, utilization and storage sites. The CCUS cost includes the cost of flue gas dehydration, CO2 capture, transportation and injection, and revenue from CO2 utilization through enhanced oil recovery (CO2-EOR). The overall network is economically optimized over a 20 years’ life span to provide the geographic distribution and scale of capture, utilization and sequestration sites as well as the transportation routes for different scenarios. The results suggest that it is economic feasible to reduce 50% of the current CO2 emissions from the stationary sources at a total annual cost $2.30 billion accompanied with $0.77 billion of revenue generated annually through CO2-EOR. Overall, the optimal CCUS supply chain network correspond to a net cost of $23.53 per ton of CO2. The results are compared with source-sink model and it can be observed that the total annualized net cost is reduced from $1.62 billion to $1.53 billion and the transportation cost are reduced from $0.27 billion to $0.19 billion.

Suggested Citation

  • Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:194-206
    DOI: 10.1016/j.apenergy.2018.09.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishna Priya, G.S. & Bandyopadhyay, Santanu, 2017. "Multi-objective pinch analysis for power system planning," Applied Energy, Elsevier, vol. 202(C), pages 335-347.
    2. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    3. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    4. Karjunen, Hannu & Tynjälä, Tero & Hyppänen, Timo, 2017. "A method for assessing infrastructure for CO2 utilization: A case study of Finland," Applied Energy, Elsevier, vol. 205(C), pages 33-43.
    5. Luis Míguez, José & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Rodríguez, Sandra, 2018. "Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity," Applied Energy, Elsevier, vol. 211(C), pages 1282-1296.
    6. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    7. Wen, Zong-guo & Di, Jing-han & Yu, Xue-wei & Zhang, Xuan, 2017. "Analyses of CO2 mitigation roadmap in China’s power industry: Using a Backcasting Model," Applied Energy, Elsevier, vol. 205(C), pages 644-653.
    8. Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2014. "Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems," Applied Energy, Elsevier, vol. 113(C), pages 477-487.
    9. d'Amore, Federico & Mocellin, Paolo & Vianello, Chiara & Maschio, Giuseppe & Bezzo, Fabrizio, 2018. "Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures," Applied Energy, Elsevier, vol. 223(C), pages 401-415.
    10. Lee, Jui-Yuan, 2017. "A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector," Applied Energy, Elsevier, vol. 198(C), pages 12-20.
    11. Ogden, Joan M, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt4nx7p2rz, Institute of Transportation Studies, UC Davis.
    12. Sun, Liang & Chen, Wenying, 2013. "The improved ChinaCCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China," Applied Energy, Elsevier, vol. 112(C), pages 793-799.
    13. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    14. Ogden, Joan, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt5hf491tt, Institute of Transportation Studies, UC Davis.
    15. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    16. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    17. Ogden, Joan, 2004. "Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide," Institute of Transportation Studies, Working Paper Series qt4b85674s, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holz, Franziska & Scherwath, Tim & Crespo del Granado, Pedro & Skar, Christian & Olmos, Luis & Ploussard, Quentin & Ramos, Andrés & Herbst, Andrea, 2021. "A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 104, pages 1-18.
    2. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    3. Adrien Nicolle & Diego Cedreros & Olivier Massol & Emma Jagu Schippers, 2023. "Modeling CO2 Pipeline Systems : An Analytical Lens for CCS Regulation," Working Papers hal-04087681, HAL.
    4. Wassermann, Timo & Muehlenbrock, Henry & Kenkel, Philipp & Zondervan, Edwin, 2022. "Supply chain optimization for electricity-based jet fuel: The case study Germany," Applied Energy, Elsevier, vol. 307(C).
    5. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).
    6. Shalini Kumari & Sasadhar Bera, 2023. "Developing an emission risk control model in coal‐fired power plants for investigating CO2 reduction strategies for sustainable business development," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 842-857, January.
    7. Xiang, Yanlei & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Cheng, Zeyang & Liu, Zexi, 2020. "Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion," Energy, Elsevier, vol. 206(C).
    8. Wang, Ding & Sun, Lei & Xie, Yonghui, 2023. "Performance evaluation of CO2 pressurization and storage system combined with S–CO2 power generation process and absorption refrigeration cycle," Energy, Elsevier, vol. 273(C).
    9. Hailin Mu & Zhewen Pei & Hongye Wang & Nan Li & Ye Duan, 2022. "Optimal Strategy for Low-Carbon Development of Power Industry in Northeast China Considering the ‘Dual Carbon’ Goal," Energies, MDPI, vol. 15(17), pages 1-22, September.
    10. Zhang, Shuai & Zhuang, Yu & Liu, Linlin & Zhang, Lei & Du, Jian, 2019. "Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Weimann, Lukas & Dubbink, Guus & van der Ham, Louis & Gazzani, Matteo, 2023. "A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation," Applied Energy, Elsevier, vol. 336(C).
    12. Wenyue Zhou & Lingying Pan & Xiaohui Mao, 2023. "Optimization and Comparative Analysis of Different CCUS Systems in China: The Case of Shanxi Province," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    13. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    14. Christiano B. Peres & Pedro M. R. Resende & Leonel J. R. Nunes & Leandro C. de Morais, 2022. "Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO 2 Mitigation Potential Analysis," Clean Technol., MDPI, vol. 4(4), pages 1-15, November.
    15. Yiwei Wu & Hongyu Zhang & Shuaian Wang & Lu Zhen, 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    16. Song, Xiaohua & Ge, Zeqi & Zhang, Wen & Wang, Zidong & Huang, Yamin & Liu, Hong, 2023. "Study on multi-subject behavior game of CCUS cooperative alliance," Energy, Elsevier, vol. 262(PB).
    17. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    19. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    20. Zhang, Xin & Liao, Qi & Wang, Qiang & Wang, Limin & Qiu, Rui & Liang, Yongtu & Zhang, Haoran, 2021. "How to promote zero-carbon oilfield target? A technical-economic model to analyze the economic and environmental benefits of Recycle-CCS-EOR project," Energy, Elsevier, vol. 225(C).
    21. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    22. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    23. Lee, Hwarang & Lee, Jeongeun & Koo, Yoonmo, 2022. "Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change," Applied Energy, Elsevier, vol. 317(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Zhuang, Yu & Liu, Linlin & Zhang, Lei & Du, Jian, 2019. "Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Tapia, John Frederick D. & Lee, Jui-Yuan & Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations," Applied Energy, Elsevier, vol. 184(C), pages 337-345.
    3. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    4. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    5. Suoton P. Peletiri & Nejat Rahmanian & Iqbal M. Mujtaba, 2018. "CO 2 Pipeline Design: A Review," Energies, MDPI, vol. 11(9), pages 1-25, August.
    6. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    7. Clausen, Lasse R. & Elmegaard, Brian & Houbak, Niels, 2010. "Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass," Energy, Elsevier, vol. 35(12), pages 4831-4842.
    8. Míguez, José Luis & Porteiro, Jacobo & Pérez-Orozco, Raquel & Patiño, David & Gómez, Miguel Ángel, 2020. "Biological systems for CCS: Patent review as a criterion for technological development," Applied Energy, Elsevier, vol. 257(C).
    9. Olateju, Babatunde & Kumar, Amit, 2016. "A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands," Energy, Elsevier, vol. 115(P1), pages 604-614.
    10. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    11. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    13. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    14. McCollum, David L & Ogden, Joan M, 2006. "Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity," Institute of Transportation Studies, Working Paper Series qt1zg00532, Institute of Transportation Studies, UC Davis.
    15. Karjunen, Hannu & Tynjälä, Tero & Hyppänen, Timo, 2017. "A method for assessing infrastructure for CO2 utilization: A case study of Finland," Applied Energy, Elsevier, vol. 205(C), pages 33-43.
    16. Olateju, Babatunde & Monds, Joshua & Kumar, Amit, 2014. "Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands," Applied Energy, Elsevier, vol. 118(C), pages 48-56.
    17. Hailey, Anna K. & Meerman, Johannes C. & Larson, Eric D. & Loo, Yueh-Lin, 2016. "Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas," Applied Energy, Elsevier, vol. 183(C), pages 1722-1730.
    18. Jui-Yuan Lee & Han-Fu Lin, 2019. "Multi-Footprint Constrained Energy Sector Planning," Energies, MDPI, vol. 12(12), pages 1-18, June.
    19. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    20. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:194-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.