IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp310-319.html
   My bibliography  Save this article

New solar-biomass power generation system integrated a two-stage gasifier

Author

Listed:
  • Bai, Zhang
  • Liu, Qibin
  • Lei, Jing
  • Hong, Hui
  • Jin, Hongguang

Abstract

A new solar-biomass power generation system that integrates a two-stage gasifier is proposed in this paper. In this system, two different types of solar collectors, concentrating solar thermal energy at different temperature levels, are applied to drive solar-biomass thermochemical processes of pyrolysis (at about 643K) and gasification (at about 1150K) for production of solar fuel. The produced solar fuel, namely gasified syngas, is directly utilized by an advanced combined cycle system for power generation. Numerical simulations are implemented to evaluate the on-design and off-design thermodynamic performances of the system. Results indicate that the proposed system can achieve an overall energy efficiency of 27.93% and a net solar-to-electric efficiency of 19.89% under the nominal condition. The proposed two-stage solar-biomass gasification routine exhibits improved system thermodynamic performance compared to that in one-stage gasification technical mode, and the provided heat resource is in a good match with the requirements for the biomass gasification procedure. Under given simulation conditions in this paper, the energy level upgrade ratio in the proposed two-stage solar-biomass gasification system for the introduced solar thermal energy is as high as 32.35% compared to 21.62% in one-stage gasification mode. Meanwhile, the daily average net solar-to-electric efficiency on the representative days reaches to the range of 8.88–19.04%, while that of 9.97–15.71% in one-stage model. The research findings provide a promising approach for efficient utilization of the abundant solar and biomass resources in western China and reduction of CO2 emission.

Suggested Citation

  • Bai, Zhang & Liu, Qibin & Lei, Jing & Hong, Hui & Jin, Hongguang, 2017. "New solar-biomass power generation system integrated a two-stage gasifier," Applied Energy, Elsevier, vol. 194(C), pages 310-319.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:310-319
    DOI: 10.1016/j.apenergy.2016.06.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630856X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    2. Sharma, Abhishek & Pareek, Vishnu & Zhang, Dongke, 2015. "Biomass pyrolysis—A review of modelling, process parameters and catalytic studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1081-1096.
    3. Gokon, Nobuyuki & Izawa, Takuya & Kodama, Tatsuya, 2015. "Steam gasification of coal cokes by internally circulating fluidized-bed reactor by concentrated Xe-light radiation for solar syngas production," Energy, Elsevier, vol. 79(C), pages 264-272.
    4. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    5. Montes, María J. & Rubbia, Carlo & Abbas, Rubén & Martínez-Val, José M., 2014. "A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power," Energy, Elsevier, vol. 73(C), pages 192-203.
    6. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    7. Wang, Sheng & Bi, Xiaotao & Wang, Shudong, 2015. "Thermodynamic analysis of biomass gasification for biomethane production," Energy, Elsevier, vol. 90(P2), pages 1207-1218.
    8. Pérez-Navarro, A. & Alfonso, D. & Ariza, H.E. & Cárcel, J. & Correcher, A. & Escrivá-Escrivá, G. & Hurtado, E. & Ibáñez, F. & Peñalvo, E. & Roig, R. & Roldán, C. & Sánchez, C. & Segura, I. & Vargas, C, 2016. "Experimental verification of hybrid renewable systems as feasible energy sources," Renewable Energy, Elsevier, vol. 86(C), pages 384-391.
    9. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    10. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    11. Desideri, U. & Zepparelli, F. & Morettini, V. & Garroni, E., 2013. "Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations," Applied Energy, Elsevier, vol. 102(C), pages 765-784.
    12. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    13. Chau, J. & Sowlati, T. & Sokhansanj, S. & Preto, F. & Melin, S. & Bi, X., 2009. "Techno-economic analysis of wood biomass boilers for the greenhouse industry," Applied Energy, Elsevier, vol. 86(3), pages 364-371, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    2. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Investigation of a solar-biomass gasification system with the production of methanol and electricity: Thermodynamic, economic and off-design operation," Applied Energy, Elsevier, vol. 243(C), pages 91-101.
    3. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    4. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    5. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    6. Terrapon-Pfaff, Julia & Fink, Thomas & Viebahn, Peter & Jamea, El Mostafa, 2019. "Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Toshiyuki Sueyoshi & Mika Goto, 2019. "Comparison among Three Groups of Solar Thermal Power Stations by Data Envelopment Analysis," Energies, MDPI, vol. 12(13), pages 1-20, June.
    8. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    9. Gómez-Villarejo, Roberto & Martín, Elisa I. & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Martínez-Merino, Paloma & Carrillo-Berdugo, Iván & Alcántara, Rodrigo & Fernández-Lo, 2018. "Towards the improvement of the global efficiency of concentrating solar power plants by using Pt-based nanofluids: The internal molecular structure effect," Applied Energy, Elsevier, vol. 228(C), pages 2262-2274.
    10. Tiwari, Vivek & Rai, Aakash C. & Srinivasan, P., 2021. "Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions," Renewable Energy, Elsevier, vol. 174(C), pages 305-319.
    11. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Weldekidan, Haftom & Strezov, Vladimir & Town, Graham, 2018. "Review of solar energy for biofuel extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 184-192.
    13. Ahmed Aljudaya & Stavros Michailos & Derek B. Ingham & Kevin J. Hughes & Lin Ma & Mohamed Pourkashanian, 2024. "Techno-Economic Assessment of Molten Salt-Based Concentrated Solar Power: Case Study of Linear Fresnel Reflector with a Fossil Fuel Backup under Saudi Arabia’s Climate Conditions," Energies, MDPI, vol. 17(11), pages 1-29, June.
    14. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Arancibia-Bulnes, Camilo A. & Valadés-Pelayo, Patricio J. & Villafán-Vidales, Heidi Isabel, 2021. "Solar integrated hydrothermal processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Rodat, Sylvain & Abanades, Stéphane & Boujjat, Houssame & Chuayboon, Srirat, 2020. "On the path toward day and night continuous solar high temperature thermochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Potenza, Marco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2017. "Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid," Applied Energy, Elsevier, vol. 203(C), pages 560-570.
    17. Abbas, R. & Martínez-Val, J.M., 2017. "A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study," Applied Energy, Elsevier, vol. 185(P2), pages 1136-1151.
    18. Magrassi, Fabio & Rocco, Elena & Barberis, Stefano & Gallo, Michela & Del Borghi, Adriana, 2019. "Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach," Renewable Energy, Elsevier, vol. 130(C), pages 290-304.
    19. Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2017. "Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood," Energy, Elsevier, vol. 125(C), pages 552-561.
    20. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:310-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.