Comparison of different heat transfer models for parabolic trough solar collectors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.03.059
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
- Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
- Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
- Wu, Zhiyong & Li, Shidong & Yuan, Guofeng & Lei, Dongqiang & Wang, Zhifeng, 2014. "Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver," Applied Energy, Elsevier, vol. 113(C), pages 902-911.
- Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
- Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
- Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jin, Jian & Ling, Yunyi & Hao, Yong, 2017. "Similarity analysis of parabolic-trough solar collectors," Applied Energy, Elsevier, vol. 204(C), pages 958-965.
- Li, Zeng-Yao & Huang, Zhen & Tao, Wen-Quan, 2016. "Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube," Energy, Elsevier, vol. 113(C), pages 1288-1303.
- Chaanaoui, Meriem & Vaudreuil, Sébastien & Eddouibi, Jaouad & Ladouy, Sara & Abderafi, Souad & Bounahmidi, Tijani, 2024. "A detailed 1D model of a parabolic trough solar receiver with a double-validation approach," Energy, Elsevier, vol. 294(C).
- Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
- Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
- Hassan, Muhammed A. & Fouad, Aya & Dessoki, Khaled & Al-Ghussain, Loiy & Hamed, Ahmed, 2023. "Performance analyses of supercritical carbon dioxide-based parabolic trough collectors with double-glazed receivers," Renewable Energy, Elsevier, vol. 215(C).
- Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
- Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
- Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
- Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
- Alashkar, Adnan & Gadalla, Mohamed, 2017. "Thermo-economic analysis of an integrated solar power generation system using nanofluids," Applied Energy, Elsevier, vol. 191(C), pages 469-491.
- Bijarniya, Jay Prakash & Sudhakar, K. & Baredar, Prashant, 2016. "Concentrated solar power technology in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 593-603.
- Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2020. "Performance evaluation of a linear Fresnel collector with catoptric subsets," Renewable Energy, Elsevier, vol. 156(C), pages 68-83.
- Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
- Liang, Hongbo & You, Shijun & Zhang, Huan, 2016. "Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors," Energy, Elsevier, vol. 96(C), pages 37-47.
- Liang, Hongbo & Fan, Man & You, Shijun & Zheng, Wandong & Zhang, Huan & Ye, Tianzhen & Zheng, Xuejing, 2017. "A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 201(C), pages 60-68.
- Potenza, Marco & Milanese, Marco & Colangelo, Gianpiero & de Risi, Arturo, 2017. "Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid," Applied Energy, Elsevier, vol. 203(C), pages 560-570.
- Bai, Zhang & Liu, Qibin & Lei, Jing & Hong, Hui & Jin, Hongguang, 2017. "New solar-biomass power generation system integrated a two-stage gasifier," Applied Energy, Elsevier, vol. 194(C), pages 310-319.
- Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
- Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
- Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
- Liang, Hongbo & Fan, Man & You, Shijun & Xia, Junbao & Zhang, Huan & Wang, Yaran, 2018. "An analysis of the heat loss and overheating protection of a cavity receiver with a novel movable cover for parabolic trough solar collectors," Energy, Elsevier, vol. 158(C), pages 719-729.
- Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
- Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
- Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
- Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
- Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
- Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
- Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.
- Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
- Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
- Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
- Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
- Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
- Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
- Heng, Shye Yunn & Asako, Yutaka & Suwa, Tohru & Nagasaka, Ken, 2019. "Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network," Renewable Energy, Elsevier, vol. 131(C), pages 168-179.
- Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
- Song, Xingwang & Dong, Guobo & Gao, Fangyuan & Diao, Xungang & Zheng, Liqing & Zhou, Fuyun, 2014. "A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts," Energy, Elsevier, vol. 77(C), pages 771-782.
- Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
- Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
- Jin, Jian & Ling, Yunyi & Hao, Yong, 2017. "Similarity analysis of parabolic-trough solar collectors," Applied Energy, Elsevier, vol. 204(C), pages 958-965.
More about this item
Keywords
Parabolic trough solar collector; Heat transfer model; Thermal performance research; Numerical simulation; Precision analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:148:y:2015:i:c:p:105-114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.