IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp703-712.html
   My bibliography  Save this article

Highly stable gasified straw slag as a novel solid base catalyst for the effective synthesis of biodiesel: Characteristics and performance

Author

Listed:
  • Wang, Jiayan
  • Xing, Shiyou
  • Huang, Yanqin
  • Fan, Pei
  • Fu, Junying
  • Yang, Gaixiu
  • Yang, Lingmei
  • Lv, Pengmei

Abstract

A novel solid base catalyst derived from gasified straw slag for producing biodiesel was prepared by simple pulverization and sieving. This catalyst exhibited high stability, low leaching of the catalytic species, and good catalytic activity, caused by high-temperature melting in the biomass gasifier. SiO2, CaO, K2O, MgO, FeO, and Al2O3 were the common constituents (calculated as oxides) as per XRF analysis and EA. XRD and TEM-EDS analysis indicated that the catalyst comprises three crystallites: quartz, leucite, and åkermanite. The catalyst was strongly basic with a basic site concentration of 0.3974mmol⋅g−1, including strongly basic low-coordination oxygen anions, moderately basic OH groups, and metal–oxygen pairs, as identified by CO2-TPD and IR. TGA results indicated that the catalyst is thermally stable up to 400°C, which is greater than the typical reaction temperature. BET analysis results indicated that the slag exhibits a broad pore distribution with pore diameters of 5–15 and 45–75nm. The catalyst exhibited high catalytic activity and stability, exhibiting a fatty acid methyl ester (FAME) conversion of 95% for transesterification conducted at 200°C for 8h with a catalyst dose of 20% and a methanol–oil molar ratio of 12:1. The FAME conversion remained greater than 85% even after reusing the catalyst for 33 reactions without any appreciable loss of catalytic activity. Small amounts of K and Mg (<10ppm) leached into the product from the catalyst. These results indicated that the gasified straw slag catalyst demonstrates promise for producing biodiesel.

Suggested Citation

  • Wang, Jiayan & Xing, Shiyou & Huang, Yanqin & Fan, Pei & Fu, Junying & Yang, Gaixiu & Yang, Lingmei & Lv, Pengmei, 2017. "Highly stable gasified straw slag as a novel solid base catalyst for the effective synthesis of biodiesel: Characteristics and performance," Applied Energy, Elsevier, vol. 190(C), pages 703-712.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:703-712
    DOI: 10.1016/j.apenergy.2017.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Fengxian & Li, Yihuai & Yang, Dongya & Li, Xiaohua & Sun, Ping, 2011. "Biodiesel production from mixed soybean oil and rapeseed oil," Applied Energy, Elsevier, vol. 88(6), pages 2050-2055, June.
    2. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    3. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    4. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    5. Guan, Qingqing & Shang, Hua & Liu, Jing & Gu, Junjie & Li, Bin & Miao, Rongrong & Chen, Qiuling & Ning, Ping, 2016. "Biodiesel from transesterification at low temperature by AlCl3 catalysis in ethanol and carbon dioxide as cosolvent: Process, mechanism and application," Applied Energy, Elsevier, vol. 164(C), pages 380-386.
    6. Lin, Lin & Ying, Dong & Chaitep, Sumpun & Vittayapadung, Saritporn, 2009. "Biodiesel production from crude rice bran oil and properties as fuel," Applied Energy, Elsevier, vol. 86(5), pages 681-688, May.
    7. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    8. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    9. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun, 2012. "Optimal option of distributed energy systems for building complexes in different climate zones in China," Applied Energy, Elsevier, vol. 91(1), pages 156-165.
    10. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    11. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    12. Ben-Iwo, Juliet & Manovic, Vasilije & Longhurst, Philip, 2016. "Biomass resources and biofuels potential for the production of transportation fuels in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 172-192.
    13. Bari, S., 2014. "Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel," Applied Energy, Elsevier, vol. 124(C), pages 35-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El yaakouby, Ichraq & Rhrissi, Ilyass & Abouliatim, Youness & Hlaibi, Miloudi & Kamil, Noureddine, 2023. "Moroccan sardine scales as a novel and renewable source of heterogeneous catalyst for biodiesel production using palm fatty acid distillate," Renewable Energy, Elsevier, vol. 217(C).
    2. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Nath, Biswajit & Basumatary, Bidangshri & Brahma, Sujata & Das, Bipul & Kalita, Pranjal & Rokhum, Samuel Lalthazuala & Basumatary, Sanjay, 2023. "Musa champa peduncle waste-derived efficient catalyst: Studies of biodiesel synthesis, reaction kinetics and thermodynamics," Energy, Elsevier, vol. 270(C).
    4. Sulaiman, Nur Fatin & Lee, Siew Ling & Toemen, Susilawati & Bakar, Wan Azelee Wan Abu, 2020. "Physicochemical characteristics of Cu/Zn/γ-Al2O3 catalyst and its mechanistic study in transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 142-157.
    5. Nath, Biswajit & Kalita, Pranjal & Das, Bipul & Basumatary, Sanjay, 2020. "Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 295-310.
    6. Zhao, Haitao & Mu, Xueliang & Yang, Gang & George, Mike & Cao, Pengfei & Fanady, Billy & Rong, Siyu & Gao, Xiang & Wu, Tao, 2017. "Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants," Applied Energy, Elsevier, vol. 207(C), pages 254-264.
    7. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    2. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Targets and results of the Brazilian Biodiesel Incentive Program – Has it reached the Promised Land?," Applied Energy, Elsevier, vol. 97(C), pages 91-100.
    3. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    4. Su, Chia-Hung, 2013. "Recoverable and reusable hydrochloric acid used as a homogeneous catalyst for biodiesel production," Applied Energy, Elsevier, vol. 104(C), pages 503-509.
    5. Singh, Veena & Bux, Faizal & Sharma, Yogesh Chandra, 2016. "A low cost one pot synthesis of biodiesel from waste frying oil (WFO) using a novel material, β-potassium dizirconate (β-K2Zr2O5)," Applied Energy, Elsevier, vol. 172(C), pages 23-33.
    6. Liu, Chien-Hung & Huang, Chien-Chang & Wang, Yao-Wen & Lee, Duu-Jong & Chang, Jo-Shu, 2012. "Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles," Applied Energy, Elsevier, vol. 100(C), pages 41-46.
    7. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    8. Anietie O. Etim & Eriola Betiku & Sheriff O. Ajala & Peter J. Olaniyi & Tunde V. Ojumu, 2018. "Potential of Ripe Plantain Fruit Peels as an Ecofriendly Catalyst for Biodiesel Synthesis: Optimization by Artificial Neural Network Integrated with Genetic Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    9. Li, Yuesong & Lian, Shuang & Tong, Dongmei & Song, Ruili & Yang, Wenyan & Fan, Yong & Qing, Renwei & Hu, Changwei, 2011. "One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst," Applied Energy, Elsevier, vol. 88(10), pages 3313-3317.
    10. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    11. Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).
    12. Gong, Shu-wen & Lu, Jing & Wang, Hong-hong & Liu, Li-jun & Zhang, Qian, 2014. "Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid," Applied Energy, Elsevier, vol. 134(C), pages 283-289.
    13. Dawodu, Folasegun A. & Ayodele, Olubunmi & Xin, Jiayu & Zhang, Suojiang & Yan, Dongxia, 2014. "Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst," Applied Energy, Elsevier, vol. 114(C), pages 819-826.
    14. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    15. Zhang, Yue & Wong, Wing-Tak & Yung, Ka-Fu, 2014. "Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia," Applied Energy, Elsevier, vol. 116(C), pages 191-198.
    16. Kwon, Eilhann E. & Jeon, Eui-Chan & Yi, Haakrho & Kim, Sungpyo, 2014. "Transforming duck tallow into biodiesel via noncatalytic transesterification," Applied Energy, Elsevier, vol. 116(C), pages 20-25.
    17. Karavalakis, Georgios & Anastopoulos, Georgios & Stournas, Stamos, 2011. "Tetramethylguanidine as an efficient catalyst for transesterification of waste frying oils," Applied Energy, Elsevier, vol. 88(11), pages 3645-3650.
    18. Maleki, Esmat & Aroua, Mohamed Kheireddine & Sulaiman, Nik Meriam Nik, 2013. "Improved yield of solvent free enzymatic methanolysis of palm and jatropha oils blended with castor oil," Applied Energy, Elsevier, vol. 104(C), pages 905-909.
    19. Gude, Veera Gnaneswar & Grant, Georgene Elizabeth, 2013. "Biodiesel from waste cooking oils via direct sonication," Applied Energy, Elsevier, vol. 109(C), pages 135-144.
    20. Balajii, Muthusamy & Niju, Subramaniapillai, 2020. "Banana peduncle – A green and renewable heterogeneous base catalyst for biodiesel production from Ceiba pentandra oil," Renewable Energy, Elsevier, vol. 146(C), pages 2255-2269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:703-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.