IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v129y2014icp207-216.html
   My bibliography  Save this article

Major and trace elements in coal bottom ash at different oxy coal combustion conditions

Author

Listed:
  • Oboirien, B.O.
  • Thulari, V.
  • North, B.C.

Abstract

This paper presents a detailed study on the effect of temperature on the concentration of 27 major and trace elements in bottom ash generated from oxy fuel-combustion. The major elements are Na, Mg, Al, K, Ca and Fe and the minor and trace elements are Li, Cr, V, Mn, Sr, Ba, Cu, Zn, Rb, Co, Ni, Ga, Pb, Be, Mo, U, Ag, Cd, Te, Bi and Ti respectively. The effect of oxygen concentration at two different temperatures on the concentration all the elements was investigated. From the results obtained, the highest level of enrichment for all the elements in the bottom ash was at oxy combustion conditions of 50% O2 and 50% CO2 at 900°C. An exception was for Fe, Mn and Mo where it was at 21% O2 and 79% CO2 at 1000°C, 21% O2 and 79% CO2 at 900°C and 50% O2 and 50% CO2 1000°C respectively.

Suggested Citation

  • Oboirien, B.O. & Thulari, V. & North, B.C., 2014. "Major and trace elements in coal bottom ash at different oxy coal combustion conditions," Applied Energy, Elsevier, vol. 129(C), pages 207-216.
  • Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:207-216
    DOI: 10.1016/j.apenergy.2014.04.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Álvarez, L. & Yin, C. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions," Energy, Elsevier, vol. 62(C), pages 255-268.
    2. de Diego, L.F. & de las Obras-Loscertales, M. & Rufas, A. & García-Labiano, F. & Gayán, P. & Abad, A. & Adánez, J., 2013. "Pollutant emissions in a bubbling fluidized bed combustor working in oxy-fuel operating conditions: Effect of flue gas recirculation," Applied Energy, Elsevier, vol. 102(C), pages 860-867.
    3. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    4. Oecd, 2013. "Who are the Academic All-rounders?," PISA in Focus 31, OECD Publishing.
    5. Wu, Yinghai & Wang, Chunbo & Tan, Yewen & Jia, Lufei & Anthony, Edward J., 2011. "Characterization of ashes from a 100kWth pilot-scale circulating fluidized bed with oxy-fuel combustion," Applied Energy, Elsevier, vol. 88(9), pages 2940-2948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oboirien, B.O. & Thulari, V. & North, B.C., 2016. "Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types," Applied Energy, Elsevier, vol. 177(C), pages 81-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    2. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    3. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    4. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    5. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    6. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    7. Hu, Yukun & Li, Hailong & Yan, Jinyue, 2014. "Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion," Applied Energy, Elsevier, vol. 130(C), pages 543-551.
    8. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    9. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei, 2017. "Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters," Applied Energy, Elsevier, vol. 199(C), pages 310-322.
    10. Singh, Ravi Inder & Kumar, Rajesh, 2016. "Current status and experimental investigation of oxy-fired fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 398-420.
    11. Dai, Gaofeng & Zhang, Jiaye & Wang, Xuebin & Tan, Houzhang & Rahman, Zia ur, 2022. "Calcination and desulfurization characteristics of calcium carbonate in pressurized oxy-combustion," Energy, Elsevier, vol. 261(PA).
    12. Duan, Lunbo & Liu, Daoyin & Chen, Xiaoping & Zhao, Changsui, 2012. "Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal," Applied Energy, Elsevier, vol. 95(C), pages 295-299.
    13. Si, Junping & Liu, Xiaowei & Xu, Minghou & Sheng, Lei & Zhou, Zijian & Wang, Chao & Zhang, Yang & Seo, Yong-Chil, 2014. "Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal," Applied Energy, Elsevier, vol. 114(C), pages 434-444.
    14. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    15. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    16. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    17. Wen, Xu & Luo, Kun & Luo, Yujuan & Kassem, Hassan I. & Jin, Hanhui & Fan, Jianren, 2016. "Large eddy simulation of a semi-industrial scale coal furnace using non-adiabatic three-stream flamelet/progress variable model," Applied Energy, Elsevier, vol. 183(C), pages 1086-1097.
    18. Bartosz Ciupek & Rafał Urbaniak & Dobrosława Kinalska & Zbigniew Nadolny, 2024. "Flue Gas Recirculation System for Biomass Heating Boilers—Research and Technical Applications for Reductions in Nitrogen Oxides (NO x ) Emissions," Energies, MDPI, vol. 17(1), pages 1-16, January.
    19. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    20. Hashimoto, Nozomu & Shirai, Hiromi, 2014. "Numerical simulation of sub-bituminous coal and bituminous coal mixed combustion employing tabulated-devolatilization-process model," Energy, Elsevier, vol. 71(C), pages 399-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:129:y:2014:i:c:p:207-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.