IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp510-523.html
   My bibliography  Save this article

Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage

Author

Listed:
  • Gomez-Garcia, Fabrisio
  • Gauthier, Daniel
  • Flamant, Gilles

Abstract

This paper presents an analytical model of a multistage fluidised bed heat exchanger for particle-based solar power plants. This model was developed as an applicable design tool for similar devices. It enables a parametric analysis of the heat exchanger performance to be conducted as a function of the operating specifications of the plant power block, the heat exchanger geometry and the fluidised bed properties, among other parameters. A 50MWe solar plant with a two-stage Rankine cycle operating at 535°C was used to analyse the heat exchanger design. The results indicate that for the proposed application, improvements in the thermal behaviour mostly depend on the addition of preheating and superheating stages. The most efficient configuration includes seven fluid bed stages with a thermal efficiency of 99.3% and a global heat exchange efficiency of 49.7%. With such a configuration, a maximum solid temperature difference of 387°C may be achieved between the heat exchanger entrance and its exit for particle inlet temperature of 650°C, thus enabling the best utilization of the thermal energy stored in the solid particles.

Suggested Citation

  • Gomez-Garcia, Fabrisio & Gauthier, Daniel & Flamant, Gilles, 2017. "Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage," Applied Energy, Elsevier, vol. 190(C), pages 510-523.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:510-523
    DOI: 10.1016/j.apenergy.2016.12.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916319237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso, Elisa & Romero, Manuel, 2015. "Review of experimental investigation on directly irradiated particles solar reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 53-67.
    2. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    3. Cabeza, Luisa F. & Solé, Aran & Fontanet, Xavier & Barreneche, Camila & Jové, Aleix & Gallas, Manuel & Prieto, Cristina & Fernández, A. Inés, 2017. "Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (CSP): Proof of concept," Applied Energy, Elsevier, vol. 185(P1), pages 836-845.
    4. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    5. Zhang, Huili & Benoit, Hadrien & Gauthier, Daniel & Degrève, Jan & Baeyens, Jan & López, Inmaculada Pérez & Hemati, Mehrdji & Flamant, Gilles, 2016. "Particle circulation loops in solar energy capture and storage: Gas–solid flow and heat transfer considerations," Applied Energy, Elsevier, vol. 161(C), pages 206-224.
    6. Tan, Y. & Jia, L. & Wu, Y. & Anthony, E.J., 2012. "Experiences and results on a 0.8MWth oxy-fuel operation pilot-scale circulating fluidized bed," Applied Energy, Elsevier, vol. 92(C), pages 343-347.
    7. Fornarelli, F. & Camporeale, S.M. & Fortunato, B. & Torresi, M. & Oresta, P. & Magliocchetti, L. & Miliozzi, A. & Santo, G., 2016. "CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants," Applied Energy, Elsevier, vol. 164(C), pages 711-722.
    8. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).
    2. Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
    3. Fernández-Torrijos, M. & Albrecht, K.J. & Ho, C.K., 2018. "Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control," Applied Energy, Elsevier, vol. 226(C), pages 595-606.
    4. Reyes-Belmonte, M.A. & Sebastián, A. & Spelling, J. & Romero, M. & González-Aguilar, J., 2019. "Annual performance of subcritical Rankine cycle coupled to an innovative particle receiver solar power plant," Renewable Energy, Elsevier, vol. 130(C), pages 786-795.
    5. David Wünsch & Verena Sulzgruber & Markus Haider & Heimo Walter, 2020. "FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity," Energies, MDPI, vol. 13(17), pages 1-20, August.
    6. Rashidi, Saman & Kashefi, Mohammad Hossein & Kim, Kyung Chun & Samimi-Abianeh, Omid, 2019. "Potentials of porous materials for energy management in heat exchangers – A comprehensive review," Applied Energy, Elsevier, vol. 243(C), pages 206-232.
    7. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    8. Li, Xian & Wei, Liping & Lim, Chia Wei & Chen, Jialing & Chu, Peng & Lipiński, Wojciech & Yan, Ning & Dai, Yanjun & Wang, Chi-Hwa, 2022. "Experimental and numerical study on thermal performance of an indirectly irradiated solar reactor with a clapboard-type internally circulating fluidized bed," Applied Energy, Elsevier, vol. 305(C).
    9. Sulzgruber, Verena & Wünsch, David & Haider, Markus & Walter, Heimo, 2020. "Numerical investigation on the flow behavior of a novel fluidization based particle thermal energy storage (FP-TES)," Energy, Elsevier, vol. 200(C).
    10. Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
    11. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    12. Verena Sulzgruber & David Wünsch & Heimo Walter & Markus Haider, 2020. "FP-TES: Fluidization Based Particle Thermal Energy Storage, Part II: Experimental Investigations," Energies, MDPI, vol. 13(17), pages 1-17, August.
    13. Miguel Angel Reyes-Belmonte & Francesco Rovense, 2022. "High-Efficiency Power Cycles for Particle-Based Concentrating Solar Power Plants: Thermodynamic Optimization and Critical Comparison," Energies, MDPI, vol. 15(22), pages 1-18, November.
    14. Diago, Miguel & Iniesta, Alberto Crespo & Soum-Glaude, Audrey & Calvet, Nicolas, 2018. "Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology," Applied Energy, Elsevier, vol. 216(C), pages 402-413.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Torrijos, M. & Albrecht, K.J. & Ho, C.K., 2018. "Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control," Applied Energy, Elsevier, vol. 226(C), pages 595-606.
    2. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    3. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    4. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    5. Guene Lougou, Bachirou & Wu, Lianxuan & Ma, Danni & Geng, Boxi & Jiang, Boshu & Han, Donmei & Zhang, Hao & Łapka, Piotr & Shuai, Yong, 2023. "Efficient conversion of solar energy through a macroporous ceramic receiver coupling heat transfer and thermochemical reactions," Energy, Elsevier, vol. 271(C).
    6. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
    8. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    9. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    10. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    11. Ronny Gueguen & Benjamin Grange & Françoise Bataille & Samuel Mer & Gilles Flamant, 2020. "Shaping High Efficiency, High Temperature Cavity Tubular Solar Central Receivers," Energies, MDPI, vol. 13(18), pages 1-24, September.
    12. Wu, Chunlei & Wang, Qing & Wang, Xinmin & Sun, Shipeng & Bai, Jingru & Cui, Da & Pan, Shuo & Sheng, Hongyu, 2024. "Effect of Al2O3 nanoparticle dispersion on the thermal properties of a eutectic salt for solar power applications: Experimental and molecular simulation studies," Energy, Elsevier, vol. 288(C).
    13. Rovense, Francesco & Reyes-Belmonte, Miguel Ángel & Romero, Manuel & González-Aguilar, José, 2022. "Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation," Energy, Elsevier, vol. 240(C).
    14. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    15. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    16. Ma, Xiaojing & Xu, Jinliang & Xie, Jian, 2021. "In-situ phase separation to improve phase change heat transfer performance," Energy, Elsevier, vol. 230(C).
    17. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    18. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Gillard, Jonathon & Patchigolla, Kumar, 2022. "Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application," Energy, Elsevier, vol. 238(PB).
    19. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    20. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:510-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.