Annual performance of subcritical Rankine cycle coupled to an innovative particle receiver solar power plant
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2018.06.109
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Reyes-Belmonte, M.A. & Sebastián, A. & Romero, M. & González-Aguilar, J., 2016. "Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant," Energy, Elsevier, vol. 112(C), pages 17-27.
- Gomez-Garcia, Fabrisio & Gauthier, Daniel & Flamant, Gilles, 2017. "Design and performance of a multistage fluidised bed heat exchanger for particle-receiver solar power plants with storage," Applied Energy, Elsevier, vol. 190(C), pages 510-523.
- Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
- Zhang, Huili & Benoit, Hadrien & Perez-Lopèz, Inmaculada & Flamant, Gilles & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency solar power towers using particle suspensions as heat carrier in the receiver and in the thermal energy storage," Renewable Energy, Elsevier, vol. 111(C), pages 438-446.
- Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
- Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
- Rovense, Francesco & Reyes-Belmonte, Miguel Ángel & Romero, Manuel & González-Aguilar, José, 2022. "Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation," Energy, Elsevier, vol. 240(C).
- Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
- Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
- Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
- Fan, Xiaoyu & Guo, Luna & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2023. "Liquid air energy storage system based on fluidized bed heat transfer," Renewable Energy, Elsevier, vol. 215(C).
- Miguel Angel Reyes-Belmonte & Francesco Rovense, 2022. "High-Efficiency Power Cycles for Particle-Based Concentrating Solar Power Plants: Thermodynamic Optimization and Critical Comparison," Energies, MDPI, vol. 15(22), pages 1-18, November.
- Muhammad M. Rafique & Shafiqur Rehman & Luai M. Alhems, 2023. "Recent Advancements in High-Temperature Solar Particle Receivers for Industrial Decarbonization," Sustainability, MDPI, vol. 16(1), pages 1-32, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miguel Angel Reyes-Belmonte & Francesco Rovense, 2022. "High-Efficiency Power Cycles for Particle-Based Concentrating Solar Power Plants: Thermodynamic Optimization and Critical Comparison," Energies, MDPI, vol. 15(22), pages 1-18, November.
- Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
- Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
- Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
- Zhang, Huili & Kong, Weibin & Tan, Tianwei & Baeyens, Jan, 2017. "High-efficiency concentrated solar power plants need appropriate materials for high-temperature heat capture, conveying and storage," Energy, Elsevier, vol. 139(C), pages 52-64.
- Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
- Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
- Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
- Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).
- Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
- Ma, Yuegeng & Zhang, Xuwei & Liu, Ming & Yan, Junjie & Liu, Jiping, 2018. "Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications," Energy, Elsevier, vol. 148(C), pages 839-854.
- Nunes, V.M.B. & Queirós, C.S. & Lourenço, M.J.V. & Santos, F.J.V. & Nieto de Castro, C.A., 2016. "Molten salts as engineering fluids – A review," Applied Energy, Elsevier, vol. 183(C), pages 603-611.
- Rovense, Francesco & Reyes-Belmonte, Miguel Ángel & Romero, Manuel & González-Aguilar, José, 2022. "Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation," Energy, Elsevier, vol. 240(C).
- Diago, Miguel & Iniesta, Alberto Crespo & Soum-Glaude, Audrey & Calvet, Nicolas, 2018. "Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology," Applied Energy, Elsevier, vol. 216(C), pages 402-413.
- Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
- Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
More about this item
Keywords
Solar thermal; Steam Rankine cycle; Thermodynamics optimization; Particle receiver;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:786-795. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.