Efficiency improvements for the coal-fired power plant retrofit with CO2 capture plant using chilled ammonia process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.04.059
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Bingtao & Su, Yaxin & Tao, Wenwen, 2014. "Mass transfer performance of CO2 capture in rotating packed bed: Dimensionless modeling and intelligent prediction," Applied Energy, Elsevier, vol. 136(C), pages 132-142.
- Van Wagener, David H. & Liebenthal, Ulrich & Plaza, Jorge M. & Kather, Alfons & Rochelle, Gary T., 2014. "Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios," Energy, Elsevier, vol. 72(C), pages 824-831.
- Shakerian, Farid & Kim, Ki-Hyun & Szulejko, Jan E. & Park, Jae-Woo, 2015. "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 148(C), pages 10-22.
- Xu, Gang & Yang, Yong-ping & Ding, Jie & Li, Shoucheng & Liu, Wenyi & Zhang, Kai, 2013. "Analysis and optimization of CO2 capture in an existing coal-fired power plant in China," Energy, Elsevier, vol. 58(C), pages 117-127.
- Pfaff, I. & Oexmann, J. & Kather, A., 2010. "Optimised integration of post-combustion CO2 capture process in greenfield power plants," Energy, Elsevier, vol. 35(10), pages 4030-4041.
- Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
- Manzolini, G. & Sanchez Fernandez, E. & Rezvani, S. & Macchi, E. & Goetheer, E.L.V. & Vlugt, T.J.H., 2015. "Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology," Applied Energy, Elsevier, vol. 138(C), pages 546-558.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
- Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
- Yu, Cheng-Hsiu & Chen, Ming-Tsz & Chen, Hao & Tan, Chung-Sung, 2016. "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, Elsevier, vol. 175(C), pages 269-276.
- Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Sharifzadeh, Mahdi & Bumb, Prateek & Shah, Nilay, 2016. "Carbon capture from pulverized coal power plant (PCPP): Solvent performance comparison at an industrial scale," Applied Energy, Elsevier, vol. 163(C), pages 423-435.
- Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
- Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
- Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
- Wang, Fu & Zhao, Jun & Zhang, Houcheng & Miao, He & Zhao, Jiapei & Wang, Jiatang & Yuan, Jinliang & Yan, Jinyue, 2018. "Efficiency evaluation of a coal-fired power plant integrated with chilled ammonia process using an absorption refrigerator," Applied Energy, Elsevier, vol. 230(C), pages 267-276.
- Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
- Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
- Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
- Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
- Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
- Van Wagener, David H. & Liebenthal, Ulrich & Plaza, Jorge M. & Kather, Alfons & Rochelle, Gary T., 2014. "Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios," Energy, Elsevier, vol. 72(C), pages 824-831.
- Hagi, Hayato & Neveux, Thibaut & Le Moullec, Yann, 2015. "Efficiency evaluation procedure of coal-fired power plants with CO2 capture, cogeneration and hybridization," Energy, Elsevier, vol. 91(C), pages 306-323.
- Hanak, Dawid P. & Manovic, Vasilije, 2016. "Calcium looping with supercritical CO2 cycle for decarbonisation of coal-fired power plant," Energy, Elsevier, vol. 102(C), pages 343-353.
- Fu, Wenfeng & Wang, Lanjing & Yang, Yongping, 2021. "Optimal design for double reheat coal-fired power plants with post-combustion CO2 capture: A novel thermal system integration with a carbon capture turbine," Energy, Elsevier, vol. 221(C).
- Liu, Yinan & Deng, Shuai & Zhao, Ruikai & He, Junnan & Zhao, Li, 2017. "Energy-saving pathway exploration of CCS integrated with solar energy: A review of innovative concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 652-669.
- Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
More about this item
Keywords
Chilled ammonia process; Coal-fired power plant; Carbon capture; Rate-based modelling; Efficiency penalty reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:151:y:2015:i:c:p:258-272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.