IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v150y2015icp1-8.html
   My bibliography  Save this article

Concept of the multidimensional diagnostic tool based on exhaust gas composition for marine engines

Author

Listed:
  • Kowalski, Jerzy

Abstract

This paper presents the concept of a multi-dimensional marine engine diagnostic tool. The dimensions of the tool are diagnostic signals, which form a vector in affine space. The distance of the resulting vector from reference vectors for considered technical states of the engine is the result of diagnosis. Moreover, diagnostic signals, derived from the composition of the exhaust gas, are also considered. The chosen diagnostic signals are the nitric oxide, carbon oxide, carbon dioxide and oxygen contents in the exhaust gas and the temperatures behind all engine cylinders of the marine engine. Analyses were based on laboratory tests of a 4-stroke marine engine. The operation of the proposed diagnostic tool has been partly verified by a passive experiment under sea operation conditions of a main propulsion marine engine.

Suggested Citation

  • Kowalski, Jerzy, 2015. "Concept of the multidimensional diagnostic tool based on exhaust gas composition for marine engines," Applied Energy, Elsevier, vol. 150(C), pages 1-8.
  • Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:1-8
    DOI: 10.1016/j.apenergy.2015.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Mengquan & Chen, Lingen & Jin, Jiashan & Sun, Fengrui & Wu, Chih, 2005. "Bond-graph-based fault-diagnosis for a marine condensate-booster-feedwater system," Applied Energy, Elsevier, vol. 81(4), pages 449-458, August.
    2. Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
    3. Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
    4. Bonvini, Marco & Sohn, Michael D. & Granderson, Jessica & Wetter, Michael & Piette, Mary Ann, 2014. "Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques," Applied Energy, Elsevier, vol. 124(C), pages 156-166.
    5. Ogaji, S. O. T. & Singh, R. & Probert, S. D., 2002. "Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine," Applied Energy, Elsevier, vol. 71(4), pages 321-339, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    2. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
    3. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    4. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.
    5. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    6. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    7. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    8. Ssembatya, Martin & Claridge, David E., 2024. "Quantitative fault detection and diagnosis methods for vapour compression chillers: Exploring the potential for field-implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    10. Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
    11. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    12. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    13. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    14. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    15. Liang, Xinbin & Zhu, Xu & Chen, Siliang & Jin, Xinqiao & Xiao, Fu & Du, Zhimin, 2023. "Physics-constrained cooperative learning-based reference models for smart management of chillers considering extrapolation scenarios," Applied Energy, Elsevier, vol. 349(C).
    16. Junjie Lu & Jinquan Huang & Feng Lu, 2017. "Sensor Fault Diagnosis for Aero Engine Based on Online Sequential Extreme Learning Machine with Memory Principle," Energies, MDPI, vol. 10(1), pages 1-15, January.
    17. Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
    18. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    19. Yang, Dan & Peng, Xin & Ye, Zhencheng & Lu, Yusheng & Zhong, Weimin, 2021. "Domain adaptation network with uncertainty modeling and its application to the online energy consumption prediction of ethylene distillation processes," Applied Energy, Elsevier, vol. 303(C).
    20. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:150:y:2015:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.