IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3911-d392685.html
   My bibliography  Save this article

Transient Thermodynamic Modeling of a Scroll Compressor Using R22 Refrigerant

Author

Listed:
  • Jai Pyo Sung

    (Department of Fire & Disaster Prevention Engineering, Changshin University, Gyeongsangnam-do 51352, Korea)

  • Joon Hong Boo

    (School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang 10540, Korea)

  • Eui Guk Jung

    (Department of Fire & Disaster Prevention Engineering, Changshin University, Gyeongsangnam-do 51352, Korea)

Abstract

In this work, we investigated the transient analysis model for the performance of a scroll compressor. A transient model was developed based on the geometry of the scroll and relevant thermodynamic relations. In particular, the mass and energy conservation equations were transformed to yield pressure and temperature variations over time, respectively. As a result, the transient behavior of the refrigerant was predicted in terms of these two parameters, and the values for the suction and discharge processes had a maximum error of 5% compared to the experimental results. The predicted discharge temperature reliably agreed with the reference values during the entire compression process. The results indicate that the analytical model developed herein is a potentially useful tool for the dynamic analysis of a scroll compressor.

Suggested Citation

  • Jai Pyo Sung & Joon Hong Boo & Eui Guk Jung, 2020. "Transient Thermodynamic Modeling of a Scroll Compressor Using R22 Refrigerant," Energies, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3911-:d:392685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2017. "Dynamic modelling and experimental validation of scroll expander for small scale power generation system," Applied Energy, Elsevier, vol. 186(P3), pages 262-281.
    2. Xing Luo & Jihong Wang & Christopher Krupke & Hongming Xu, 2016. "Feasibility Study of a Scroll Expander for Recycling Low-Pressure Exhaust Gas Energy from a Vehicle Gasoline Engine System," Energies, MDPI, vol. 9(4), pages 1-22, March.
    3. Kim, Dongwoo & Chung, Hyun Joon & Jeon, Yongseok & Jang, Dong Soo & Kim, Yongchan, 2017. "Optimization of the injection-port geometries of a vapor injection scroll compressor based on SCOP under various climatic conditions," Energy, Elsevier, vol. 135(C), pages 442-454.
    4. Ettore Fadiga & Nicola Casari & Alessio Suman & Michele Pinelli, 2020. "Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment," Energies, MDPI, vol. 13(3), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Cardone & Bonaventura Gargiulo, 2020. "Numerical Simulation and Experimental Validation of an Oil Free Scroll Compressor," Energies, MDPI, vol. 13(22), pages 1-11, November.
    2. Xiao Qu & Yantao Shi & Jiongjiong Cai, 2022. "Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor," Energies, MDPI, vol. 15(5), pages 1-17, February.
    3. Guo, Yi & Wang, Qi & Cao, Junhao & Diao, Anna & Peng, Xueyuan, 2024. "Effects of operating parameters on the performance of an embedded two-piston compressor system for green hydrogen," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kutlu, Cagri & Erdinc, Mehmet Tahir & Li, Jing & Su, Yuehong & Pei, Gang & Gao, Guangtao & Riffat, Saffa, 2020. "Evaluate the validity of the empirical correlations of clearance and friction coefficients to improve a scroll expander semi-empirical model," Energy, Elsevier, vol. 202(C).
    2. Song, Panpan & Wei, Mingshan & Zhang, Yangjun & Sun, Liwei & Emhardt, Simon & Zhuge, Weilin, 2018. "The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system," Energy, Elsevier, vol. 158(C), pages 458-470.
    3. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    4. Ying Zhang & Li Zhao & Shuai Deng & Ming Li & Yali Liu & Qiongfen Yu & Mengxing Li, 2022. "Novel Off-Design Operation Maps Showing Functionality Limitations of Organic Rankine Cycle Validated by Experiments," Energies, MDPI, vol. 15(21), pages 1-19, November.
    5. Giuffrida, Antonio, 2017. "Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles," Applied Energy, Elsevier, vol. 193(C), pages 356-368.
    6. Jiang, L. & Lu, H.T. & Wang, L.W. & Gao, P. & Zhu, F.Q. & Wang, R.Z. & Roskilly, A.P., 2017. "Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source," Applied Energy, Elsevier, vol. 195(C), pages 478-486.
    7. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    8. Maeng, Heegyu & Kim, Jinyoung & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions," Energy, Elsevier, vol. 280(C).
    9. Andrea De Pascale, 2021. "Organic Rankine Cycle for Energy Recovery System," Energies, MDPI, vol. 14(17), pages 1-3, August.
    10. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    11. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    12. Kyle Grimaldi & Ahmad Najjaran & Zhiwei Ma & Huashan Bao & Tony Roskilly, 2023. "Dynamic Modelling and Experimental Validation of a Pneumatic Radial Piston Motor," Energies, MDPI, vol. 16(4), pages 1-18, February.
    13. Mendoza, Luis Carlos & Lemofouet, Sylvain & Schiffmann, Jürg, 2017. "Testing and modelling of a novel oil-free co-rotating scroll machine with water injection," Applied Energy, Elsevier, vol. 185(P1), pages 201-213.
    14. Juan Fang & Yonghong Xu & Hongguang Zhang & Zhi Yang & Jifang Wan & Zhengguang Liu, 2023. "Experimental Research on the Output Performance of Scroll Compressor for Micro Scale Compressed Air Energy Storage System," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    15. Ziviani, Davide & James, Nelson A. & Accorsi, Felipe A. & Braun, James E. & Groll, Eckhard A., 2018. "Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications," Applied Energy, Elsevier, vol. 230(C), pages 1140-1156.
    16. Ettore Fadiga & Nicola Casari & Alessio Suman & Michele Pinelli, 2020. "Structured Mesh Generation and Numerical Analysis of a Scroll Expander in an Open-Source Environment," Energies, MDPI, vol. 13(3), pages 1-13, February.
    17. Oh, Jinwoo & Jeong, Hoyoung & Kim, Joonbyum & Lee, Hoseong, 2020. "Numerical and experimental investigation on thermal-hydraulic characteristics of a scroll expander for organic Rankine cycle," Applied Energy, Elsevier, vol. 278(C).
    18. Leszczynski, J.S. & Grybos, D., 2019. "Compensation for the complexity and over-scaling in industrial pneumatic systems by the accumulation and reuse of exhaust air," Applied Energy, Elsevier, vol. 239(C), pages 1130-1141.
    19. Jian Sun & Bin Peng & Bingguo Zhu, 2021. "Performance Analysis and Test Research of PEMFC Oil-Free Positive Displacement Compressor for Vehicle," Energies, MDPI, vol. 14(21), pages 1-18, November.
    20. Casari, Nicola & Fadiga, Ettore & Pinelli, Michele & Randi, Saverio & Suman, Alessio & Ziviani, Davide, 2020. "Investigation of flow characteristics in a single screw expander: A numerical approach," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3911-:d:392685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.