Experimental Study on the Impact of Lubricant on the Performance of Gravity-Assisted Separated Heat Pipe
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
- Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
- Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
- Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
- Meng, Fanxi & Zhang, Quan & Lin, Yaolin & Zou, Sikai & Fu, Jiyao & Liu, Baochang & Wang, Wei & Ma, Xiaowei & Du, Sheng, 2022. "Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station," Energy, Elsevier, vol. 252(C).
- Yao, Huicong & Zhang, Jie & Li, Yuehao & Liu, Hao & Wang, Yinfeng & Li, Guiqiang & Zhu, Yuezhao, 2023. "Heat transfer and two-phase flow of a metal foam enhanced horizontal loop thermosyphon for high power solar thermal applications," Energy, Elsevier, vol. 283(C).
- Sikai Zou & Chang Yue & Ting Xiao & Xingyi Ma & Yiwei Wang, 2023. "Study on Effects of Operating Parameters on a Water-Cooled Loop Thermosyphon System under Partial Server Utilization," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
- Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
- Hafiz M. Daraghmeh & Mohammed W. Sulaiman & Kai-Shing Yang & Chi-Chuan Wang, 2018. "Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter," Energies, MDPI, vol. 12(1), pages 1-18, December.
- Zhang, Hainan & Tian, Yaling & Tian, Changqing & Zhai, Zhiqiang, 2023. "Effect of key structure and working condition parameters on a compact flat-evaporator loop heat pipe for chip cooling of data centers," Energy, Elsevier, vol. 284(C).
- Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
- Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 186(P1), pages 1-12.
- Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
- Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
- Luo, Zhenbing & He, Wei & Deng, Xiong & Zheng, Mu & Gao, Tianxiang & Li, Shiqing, 2023. "A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon," Energy, Elsevier, vol. 263(PB).
More about this item
Keywords
gravity-assisted separated heat pipe; lubricant; heat transfer performance; coupled system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3772-:d:1446882. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.