IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222006478.html
   My bibliography  Save this article

Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station

Author

Listed:
  • Meng, Fanxi
  • Zhang, Quan
  • Lin, Yaolin
  • Zou, Sikai
  • Fu, Jiyao
  • Liu, Baochang
  • Wang, Wei
  • Ma, Xiaowei
  • Du, Sheng

Abstract

The increases in power density and energy consumption of 5G telecommunication base stations make operation reliability and energy-efficiency more important. In this paper, a novel type of rack-level hybrid cooling system which combines a thermosyphon loop with a mechanical refrigeration loop was developed and applied in two parallel cabinets installed different operating powers of the communication equipment. Its performance was tested on-site in a real 5G telecommunication base station in transitional season at Wuhan city, China. Thermal safety and energy consumption under the normal and urgent operation modes were evaluated. The results showed that under the normal daily operation mode 1, communication equipment can be cooled effectively, but the power usage effectiveness value reached 1.59. Under the urgent mode 7, communication equipment can maintain safe operation for over 20 min. In view of this, five novel energy-saving operation modes 2–6 were proposed and tested. The cooling effect and energy consumption under different modes were analyzed and compared. Under the thermosyphon mode 6, the cooling system can only meet the cooling demand for one side of the cabinet when the outdoor temperature is around 20 °C. Compared to mode 1, mode 5 was recommended due to the 7–9 °C lower operating temperature and 27.3% decrease of energy consumption.

Suggested Citation

  • Meng, Fanxi & Zhang, Quan & Lin, Yaolin & Zou, Sikai & Fu, Jiyao & Liu, Baochang & Wang, Wei & Ma, Xiaowei & Du, Sheng, 2022. "Field study on the performance of a thermosyphon and mechanical refrigeration hybrid cooling system in a 5G telecommunication base station," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222006478
    DOI: 10.1016/j.energy.2022.123744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Penglei & Wang, Baolong & Wu, Wei & Shi, Wenxing & Li, Xianting, 2015. "Heat recovery from Internet data centers for space heating based on an integrated air conditioner with thermosyphon," Renewable Energy, Elsevier, vol. 80(C), pages 396-406.
    2. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    3. Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín & Makhnatch, Pavel & Molés, Francisco, 2017. "Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1031-1042.
    4. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    5. Lubritto, C. & Petraglia, A. & Vetromile, C. & Curcuruto, S. & Logorelli, M. & Marsico, G. & D’Onofrio, A., 2011. "Energy and environmental aspects of mobile communication systems," Energy, Elsevier, vol. 36(2), pages 1109-1114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selorm Kwaku Anka & Nicholas Lamptey Boafo & Kwesi Mensah & Samuel Boahen & Kwang Ho Lee & Jong Min Choi, 2022. "Study on the Performance of a Newly Designed Cooling System Utilizing Dam Water for Internet Data Centers," Energies, MDPI, vol. 15(24), pages 1-19, December.
    2. Zeng, Bo & Zhang, Weixiang & Hu, Pinduan & Sun, Jing & Gong, Dunwei, 2023. "Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach," Applied Energy, Elsevier, vol. 351(C).
    3. Qin, Siyu & Liu, Yijia & Yang, Changming & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2023. "Visualization study of co-existing boiling and condensation heat transfer in a confined flat thermosyphon," Energy, Elsevier, vol. 285(C).
    4. Alexandr Tsoy & Alexandr Granovskiy & Dmitriy Koretskiy & Diana Tsoy-Davis & Nikita Veselskiy & Mikhail Alechshenko & Alexandr Minayev & Inara Kim & Rita Jamasheva, 2023. "Experimental Study of the Heat Flow and Energy Consumption during Liquid Cooling Due to Radiative Heat Transfer in Winter," Energies, MDPI, vol. 16(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    3. Hafiz M. Daraghmeh & Mohammed W. Sulaiman & Kai-Shing Yang & Chi-Chuan Wang, 2018. "Investigation of Separated Two-Phase Thermosiphon Loop for Relieving the Air-Conditioning Loading in Datacenter," Energies, MDPI, vol. 12(1), pages 1-18, December.
    4. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    5. Tong, Zhen & Liu, Xiao-Hua & Jiang, Yi, 2017. "Experimental study of the self-regulating performance of an R744 two-phase thermosyphon loop," Applied Energy, Elsevier, vol. 186(P1), pages 1-12.
    6. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    7. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    8. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    9. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liao, Shuguang, 2015. "Performance of a free-air cooling system for telecommunications base stations using phase change materials (PCMs): In-situ tests," Applied Energy, Elsevier, vol. 147(C), pages 325-334.
    10. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    11. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    12. Hei, Yong Qiang & Zhang, Cong & Shi, Guang Ming, 2018. "Trade-off optimization between energy efficiency and spectral efficiency in large scale MIMO systems," Energy, Elsevier, vol. 145(C), pages 747-753.
    13. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Ana Fernández-Guillamón & Ángel Molina-García & Francisco Vera-García & José A. Almendros-Ibáñez, 2021. "Organic Rankine Cycle Optimization Performance Analysis Based on Super-Heater Pressure: Comparison of Working Fluids," Energies, MDPI, vol. 14(9), pages 1-16, April.
    15. Kim, Dongwoo & Lee, DongChan & Lee, Minwoo & Chung, Hyun Joon & Kim, Yongchan, 2021. "Energy performance evaluation of two-phase injection heat pump employing low-GWP refrigerant R32 under various outdoor conditions," Energy, Elsevier, vol. 214(C).
    16. Pielichowska, Kinga & Nowak, Michał & Szatkowski, Piotr & Macherzyńska, Beata, 2016. "The influence of chain extender on properties of polyurethane-based phase change materials modified with graphene," Applied Energy, Elsevier, vol. 162(C), pages 1024-1033.
    17. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    18. Pointner, Harald & de Gracia, Alvaro & Vogel, Julian & Tay, N.H.S. & Liu, Ming & Johnson, Maike & Cabeza, Luisa F., 2016. "Computational efficiency in numerical modeling of high temperature latent heat storage: Comparison of selected software tools based on experimental data," Applied Energy, Elsevier, vol. 161(C), pages 337-348.
    19. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    20. Sikai Zou & Chang Yue & Ting Xiao & Xingyi Ma & Yiwei Wang, 2023. "Study on Effects of Operating Parameters on a Water-Cooled Loop Thermosyphon System under Partial Server Utilization," Sustainability, MDPI, vol. 15(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222006478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.