IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p573-581.html
   My bibliography  Save this article

Experimental study on ceiling gas temperature and flame performances of two buoyancy-controlled propane burners located in a tunnel

Author

Listed:
  • Wan, Huaxian
  • Gao, Zihe
  • Ji, Jie
  • Li, Kaiyuan
  • Sun, Jinhua
  • Zhang, Yongming

Abstract

Multiple energy sources in a tunnel might lead to merge of flames with small enough spacings, releasing more heat and pollutant emissions than a single energy release source in tunnel and thus posing a great threat to tunnel structure, facilities and trapped people. As the heat detection, controlling and cooling systems are originally designed for the single energy release source, while the spacing between energy sources in tunnel is changeable and unpredictable. Then it is important and helpful to research on the much different characteristics of multiple energy sources with interacting ceiling flames for effective control the high risk scenarios. This paper aims to study the ceiling gas temperature profile and flame properties induced by two interacting energy sources in tunnel so as to improve the understanding of the arrangement of heat detectors and water sprinklers in tunnel. Two identical propane burners were used as energy sources located in a longitudinal array in tunnel. The total energy release rate and burner spacing were varied. The flame merging probability, ceiling gas temperature, vertical flame height and longitudinal flame extension were measured. The criteria of beginning merging and fully merging of flames are respectively proposed for two energy sources in tunnel. Results showed that the area of ceiling flame region increases with higher energy release rate. Models for predicting the ceiling gas temperature profiles induced by two energy sources in tunnel are established respectively for weak and strong plumes impinging on the ceiling. A modified model for predicting the combined vertical and longitudinal flame lengths from two burners in tunnel is proposed involving the normalized energy release rate, burner size and spacing. Finally, the comparison between models proposed for ceiling gas temperatures and flame lengths in tunnel and other configurations identifies the high risk of multiple energy sources in tunnel.

Suggested Citation

  • Wan, Huaxian & Gao, Zihe & Ji, Jie & Li, Kaiyuan & Sun, Jinhua & Zhang, Yongming, 2017. "Experimental study on ceiling gas temperature and flame performances of two buoyancy-controlled propane burners located in a tunnel," Applied Energy, Elsevier, vol. 185(P1), pages 573-581.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:573-581
    DOI: 10.1016/j.apenergy.2016.10.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choy, Y.S. & Zhen, H.S. & Leung, C.W. & Li, H.B., 2012. "Pollutant emission and noise radiation from open and impinging inverse diffusion flames," Applied Energy, Elsevier, vol. 91(1), pages 82-89.
    2. Qi, J.A. & Leung, C.W. & Wong, W.O. & Probert, S.D., 2006. "Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry," Applied Energy, Elsevier, vol. 83(12), pages 1307-1316, December.
    3. Huang, X.Q. & Leung, C.W. & Chan, C.K. & Probert, S.D., 2006. "Thermal characteristics of a premixed impinging circular laminar-flame jet with induced swirl," Applied Energy, Elsevier, vol. 83(4), pages 401-411, April.
    4. Hosain, Md Lokman & Bel Fdhila, Rebei & Daneryd, Anders, 2016. "Heat transfer by liquid jets impinging on a hot flat surface," Applied Energy, Elsevier, vol. 164(C), pages 934-943.
    5. Zhen, H.S. & Choy, Y.S. & Leung, C.W. & Cheung, C.S., 2011. "Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner," Applied Energy, Elsevier, vol. 88(9), pages 2917-2924.
    6. Barrow, H. & Pope, C. W., 2005. "Flow and heat-transfer in an internally-heated, naturally-ventilated space," Applied Energy, Elsevier, vol. 80(4), pages 427-434, April.
    7. Lee, Woo Jin & Shin, Hyun Dong, 2003. "Visual characteristics, including lift-off, of the jet flames in a cross-flow high-temperature burner," Applied Energy, Elsevier, vol. 76(1-3), pages 257-266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bo & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2019. "Experimental study on the characteristics of flame merging and tilt angle from twin propane burners under cross wind," Energy, Elsevier, vol. 174(C), pages 1200-1209.
    2. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    3. Sun, Xiepeng & Yi, Jiwei & Han, Yu & Zhang, Xiaolei & Tang, Fei & Hu, Longhua, 2024. "Facade flame depth coming out from the fire compartment opening subject the external sideward wind," Energy, Elsevier, vol. 304(C).
    4. Liu, Minzhang & Zhu, Chunguang & Zhang, Huan & Zheng, Wandong & You, Shijun & Campana, Pietro Elia & Yan, Jinyue, 2019. "The environment and energy consumption of a subway tunnel by the influence of piston wind," Applied Energy, Elsevier, vol. 246(C), pages 11-23.
    5. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    2. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    3. Li, Bo & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2019. "Experimental study on the characteristics of flame merging and tilt angle from twin propane burners under cross wind," Energy, Elsevier, vol. 174(C), pages 1200-1209.
    4. Miao, J. & Leung, C.W. & Cheung, C.S. & Huang, Z.H. & Zhen, H.S., 2016. "Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame," Energy, Elsevier, vol. 104(C), pages 284-294.
    5. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
    6. Zhang, Xiaolei & Hu, Longhua & Delichatsios, Michael A. & Zhang, Jianping, 2019. "Experimental study on flame morphologic characteristics of wall attached non-premixed buoyancy driven turbulent flames," Applied Energy, Elsevier, vol. 254(C).
    7. Sun, Xiepeng & Yi, Jiwei & Han, Yu & Zhang, Xiaolei & Tang, Fei & Hu, Longhua, 2024. "Facade flame depth coming out from the fire compartment opening subject the external sideward wind," Energy, Elsevier, vol. 304(C).
    8. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.
    9. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    10. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.
    11. Pope, C.W. & Barrow, H., 2006. "Theoretical analysis of fluid flow and heat transfer in stoichiometric combustion in a naturally-ventilated control-volume," Applied Energy, Elsevier, vol. 83(5), pages 464-476, May.
    12. Kapusta, Łukasz Jan & Shuang, Chen & Aldén, Marcus & Li, Zhongshan, 2020. "Structures of inverse jet flames stabilized on a coaxial burner," Energy, Elsevier, vol. 193(C).
    13. Zhen, H.S. & Leung, C.W. & Cheung, C.S., 2011. "Emission of impinging swirling and non-swirling inverse diffusion flames," Applied Energy, Elsevier, vol. 88(5), pages 1629-1634, May.
    14. Tajik, Abdul Raouf & Shamim, Tariq & Zaidani, Mouna & Abu Al-Rub, Rashid K., 2018. "The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling," Applied Energy, Elsevier, vol. 230(C), pages 207-219.
    15. Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.
    16. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    17. Tang, Fei & Hu, Peng & Shi, Congling, 2021. "Ceiling thermal impingement spread characteristics induced by wall-attached fires under various sub-atmospheric pressures," Energy, Elsevier, vol. 215(PB).
    18. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    19. Makmool, U. & Jugjai, S. & Tia, S. & Vallikul, P. & Fungtammasan, B., 2007. "Performance and analysis by particle image velocimetry (PIV) of cooker-top burners in Thailand," Energy, Elsevier, vol. 32(10), pages 1986-1995.
    20. Maghrabie, Hussein M., 2021. "Heat transfer intensification of jet impingement using exciting jets - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:573-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.