IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i9p2917-2924.html
   My bibliography  Save this article

Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner

Author

Listed:
  • Zhen, H.S.
  • Choy, Y.S.
  • Leung, C.W.
  • Cheung, C.S.

Abstract

An experimental study was performed to investigate the effects of the nozzle length on the air-pollutant-emission and noise-radiation behaviors of a burner utilizing a multi-fuel-jet inverse diffusion flame (MIDF). Comparison of the experimental results obtained from two MIDF burners, one with a long nozzle and the other with a short nozzle, operating under the same air/fuel supply conditions (Reair and Ф) shows rather significant differences in the flame appearance, flame centerline temperature, CO/CO2 concentrations and the noise radiation. The nozzle length influences development of the jets and hence interaction between the air/fuel jets including their mixing process. The short nozzle produces a flame with a shorter base height and a smaller potential core due to the enhanced air/fuel mixing. It also leads to faster and more complete combustion at the inner reaction cone of the flame due to the stronger and faster air/fuel mixing. The nozzle length affects the CO and CO2 concentrations, and higher peak values are obtained with the short-nozzle flame. Flame noise of the MIDF is defined as the noise radiation at different flame heights, which is of varying strength but of the same dominant frequency in the range of 250–700Hz. The noise radiation from the inner reaction cone of the flame is stronger than that from the lower and upper parts of the flame, and the maximum noise radiation occurs when the total amounts of air and fuel in the combustion zone are at the stoichiometric air/fuel ratio. For all the experiments conducted in the present study, the MIDF produced by the long nozzle is always noisier than its counterpart and it is due to the increase of the low-frequency noise components.

Suggested Citation

  • Zhen, H.S. & Choy, Y.S. & Leung, C.W. & Cheung, C.S., 2011. "Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner," Applied Energy, Elsevier, vol. 88(9), pages 2917-2924.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2917-2924
    DOI: 10.1016/j.apenergy.2011.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911001528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Fengju & Hu, Longhua & Sun, Xiepeng & Wang, Qiang & Palacios, Adriana, 2017. "Flame downwash length evolution of non-premixed gaseous fuel jets in cross-flow: Experiments and a new correlation," Applied Energy, Elsevier, vol. 198(C), pages 99-107.
    2. Rabee, Basem A., 2018. "The effect of inverse diffusion flame burner-diameter on flame characteristics and emissions," Energy, Elsevier, vol. 160(C), pages 1201-1207.
    3. Kapusta, Łukasz Jan & Shuang, Chen & Aldén, Marcus & Li, Zhongshan, 2020. "Structures of inverse jet flames stabilized on a coaxial burner," Energy, Elsevier, vol. 193(C).
    4. Wang, Qiang & Tang, Fei & Zhou, Zheng & Liu, Huan & Palacios, Adriana, 2017. "Flame height of axisymmetric gaseous fuel jets restricted by parallel sidewalls: Experiments and theoretical analysis," Applied Energy, Elsevier, vol. 208(C), pages 1519-1526.
    5. Miao, J. & Leung, C.W. & Cheung, C.S. & Huang, Z.H. & Zhen, H.S., 2016. "Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame," Energy, Elsevier, vol. 104(C), pages 284-294.
    6. Zare, Saeid & Lo, Hao Wei & Roy, Shrabanti & Askari, Omid, 2020. "On the low-temperature plasma discharge in methane/air diffusion flames," Energy, Elsevier, vol. 197(C).
    7. Wan, Huaxian & Gao, Zihe & Ji, Jie & Li, Kaiyuan & Sun, Jinhua & Zhang, Yongming, 2017. "Experimental study on ceiling gas temperature and flame performances of two buoyancy-controlled propane burners located in a tunnel," Applied Energy, Elsevier, vol. 185(P1), pages 573-581.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:9:p:2917-2924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.