IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp1400-1410.html
   My bibliography  Save this article

A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices

Author

Listed:
  • Khoroshiltseva, Marina
  • Slanzi, Debora
  • Poli, Irene

Abstract

In this paper we address the problem of designing new energy-efficient static daylight devices that will surround the external windows of a residential building in Madrid. Shading devices can in fact largely influence solar gains in a building and improve thermal and lighting comforts by selectively intercepting the solar radiation and by reducing the undesirable glare. A proper shading device can therefore significantly increase the thermal performance of a building by reducing its energy demand in different climate conditions. In order to identify the set of optimal shading devices that allow a low energy consumption of the dwelling while maintaining high levels of thermal and lighting comfort for the inhabitants we derive a multi-objective optimization methodology based on Harmony Search and Pareto front approaches. The results show that the multi-objective approach here proposed is an effective procedure in designing energy efficient shading devices when a large set of conflicting objectives characterizes the performance of the proposed solutions.

Suggested Citation

  • Khoroshiltseva, Marina & Slanzi, Debora & Poli, Irene, 2016. "A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices," Applied Energy, Elsevier, vol. 184(C), pages 1400-1410.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1400-1410
    DOI: 10.1016/j.apenergy.2016.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    2. Valian, Ehsan & Tavakoli, Saeed & Mohanna, Shahram, 2014. "An intelligent global harmony search approach to continuous optimization problems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 670-684.
    3. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    4. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    5. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    6. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.
    7. Proietti, Stefania & Desideri, Umberto & Sdringola, Paolo & Zepparelli, Francesco, 2013. "Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope," Applied Energy, Elsevier, vol. 112(C), pages 843-855.
    8. Hadidi, Amin, 2015. "A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm," Applied Energy, Elsevier, vol. 150(C), pages 196-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Yutong & Peng, Jinqing & Luo, Zhengyi & Luo, Yimo & Ma, Tao & Ji, Jie & Yang, Hongxing & Wang, Fazhi & Zhu, Minfeng, 2023. "Multi-function partitioned design method for photovoltaic curtain wall integrated with vacuum glazing towards zero-energy buildings," Renewable Energy, Elsevier, vol. 218(C).
    2. Victor Charpentier & Forrest Meggers & Sigrid Adriaenssens & Olivier Baverel, 2020. "Occupant-centered optimization framework to evaluate and design new dynamic shading typologies," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    3. Yibing Xue & Wenhan Liu, 2022. "A Study on Parametric Design Method for Optimization of Daylight in Commercial Building’s Atrium in Cold Regions," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    4. Wu, Bingjie & Cai, Wenjian & Chen, Haoran, 2021. "A model-based multi-objective optimization of energy consumption and thermal comfort for active chilled beam systems," Applied Energy, Elsevier, vol. 287(C).
    5. Schito, Eva & Conti, Paolo & Testi, Daniele, 2018. "Multi-objective optimization of microclimate in museums for concurrent reduction of energy needs, visitors’ discomfort and artwork preservation risks," Applied Energy, Elsevier, vol. 224(C), pages 147-159.
    6. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    7. Heng, Jiani & Wang, Jianzhou & Xiao, Liye & Lu, Haiyan, 2017. "Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting," Applied Energy, Elsevier, vol. 208(C), pages 845-866.
    8. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    9. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    10. Tenissara, Nopporn & Thepa, Sirichai & Monyakul, Veerapol, 2018. "Simulation, construction and evaluation of cheap piston expander for low-pressure power generation by compressed air as working fluid," Energy, Elsevier, vol. 142(C), pages 655-665.
    11. Wu, Yujie & Kämpf, Jérôme H. & Scartezzini, Jean-Louis, 2019. "Automated ‘Eye-sight’ Venetian blinds based on an embedded photometric device with real-time daylighting computing," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Jessica Settino & Cristina Carpino & Stefania Perrella & Natale Arcuri, 2020. "Multi-Objective Analysis of a Fixed Solar Shading System in Different Climatic Areas," Energies, MDPI, vol. 13(12), pages 1-18, June.
    13. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    14. Rudai Shan & Lars Junghans, 2023. "Multi-Objective Optimization for High-Performance Building Facade Design: A Systematic Literature Review," Sustainability, MDPI, vol. 15(21), pages 1-33, November.
    15. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    16. Wang, C. & Zhu, Y. & Qu, J. & Hu, H.D., 2018. "Automatic air temperature control in a container with an optic-variable wall," Applied Energy, Elsevier, vol. 224(C), pages 671-681.
    17. Momoka Nagasue & Haruka Kitagawa & Takashi Asawa & Tetsu Kubota, 2024. "A Systematic Review of Passive Cooling Methods in Hot and Humid Climates Using a Text Mining-Based Bibliometric Approach," Sustainability, MDPI, vol. 16(4), pages 1-29, February.
    18. Shaoxiong Li & Le Liu & Changhai Peng, 2020. "A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges," Sustainability, MDPI, vol. 12(4), pages 1-36, February.
    19. Chunying Li & Wankun Zhang & Fang Liu & Xiaoyu Li & Jingwei Wang & Cuimin Li, 2024. "Multi-Objective Optimization of Bifacial Photovoltaic Sunshade: Towards Better Optical, Electrical and Economical Performance," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    20. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    21. de Almeida Rocha, Ana Paula & Reynoso-Meza, Gilberto & Oliveira, Ricardo C.L.F. & Mendes, Nathan, 2020. "A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection," Applied Energy, Elsevier, vol. 262(C).
    22. Pinto, Maria Cristina & Crespi, Giulia & Dell'Anna, Federico & Becchio, Cristina, 2023. "Combining energy dynamic simulation and multi-criteria analysis for supporting investment decisions on smart shading devices in office buildings," Applied Energy, Elsevier, vol. 332(C).
    23. Mokhtar, Maizura & Burns, Stephen & Ross, Dave & Hunt, Ian, 2017. "Exploring multi-objective trade-offs in the design space of a waste heat recovery system," Applied Energy, Elsevier, vol. 195(C), pages 114-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    2. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    3. Chi, Fang'ai & Xu, Ying, 2022. "Building performance optimization for university dormitory through integration of digital gene map into multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 307(C).
    4. de Almeida Rocha, Ana Paula & Reynoso-Meza, Gilberto & Oliveira, Ricardo C.L.F. & Mendes, Nathan, 2020. "A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection," Applied Energy, Elsevier, vol. 262(C).
    5. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    6. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    9. Eleftheria Touloupaki & Theodoros Theodosiou, 2017. "Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early Stage Design Optimization—A Review," Energies, MDPI, vol. 10(5), pages 1-18, May.
    10. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    11. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    12. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    13. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    14. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    15. Shi, Xing & Tian, Zhichao & Chen, Wenqiang & Si, Binghui & Jin, Xing, 2016. "A review on building energy efficient design optimization rom the perspective of architects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 872-884.
    16. Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
    17. Lee, Chul-sung & Hoes, P. & Cóstola, D. & Hensen, J.L.M., 2019. "Assessing the performance potential of climate adaptive greenhouse shells," Energy, Elsevier, vol. 175(C), pages 534-545.
    18. Germán Ramos Ruiz & Eva Lucas Segarra & Carlos Fernández Bandera, 2018. "Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model," Energies, MDPI, vol. 12(1), pages 1-18, December.
    19. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.
    20. Binghui Si & Zhichao Tian & Wenqiang Chen & Xing Jin & Xin Zhou & Xing Shi, 2018. "Performance Assessment of Algorithms for Building Energy Optimization Problems with Different Properties," Sustainability, MDPI, vol. 11(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:1400-1410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.