IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v232y2014icp670-684.html
   My bibliography  Save this article

An intelligent global harmony search approach to continuous optimization problems

Author

Listed:
  • Valian, Ehsan
  • Tavakoli, Saeed
  • Mohanna, Shahram

Abstract

Harmony search algorithm is a meta-heuristic optimization method imitating the music improvisation process, where musicians improvise their instruments’ pitches searching for a perfect state of harmony. To solve continuous optimization problems more efficiently, this paper presents an improved harmony search algorithm using the swarm intelligence technique. Applying the proposed algorithm to several well-known benchmark problems, it is shown that it can find better solutions in comparison with both basic harmony search algorithms, and improved harmony search algorithms such as the self-adaptive global-best harmony search as well as novel global harmony search. Furthermore, a study on the effect of changing the parameters of the proposed algorithm on its performance is carried out. Finally, the proper values of the algorithm parameters are suggested.

Suggested Citation

  • Valian, Ehsan & Tavakoli, Saeed & Mohanna, Shahram, 2014. "An intelligent global harmony search approach to continuous optimization problems," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 670-684.
  • Handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:670-684
    DOI: 10.1016/j.amc.2014.01.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314001234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.01.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ceylan, Huseyin & Ceylan, Halim & Haldenbilen, Soner & Baskan, Ozgur, 2008. "Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2527-2535, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaya, Ivan & Cruz, Jorge & Correa, Rodrigo, 2015. "Harmony Search algorithm: a variant with Self-regulated Fretwidth," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1127-1152.
    2. Hu, Gang & Du, Bo & Li, Huinan & Wang, Xupeng, 2022. "Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 428-467.
    3. Bereg, Sergey & Díaz-Báñez, José-Miguel & Kroher, Nadine & Ventura, Inmaculada, 2019. "Computing melodic templates in oral music traditions," Applied Mathematics and Computation, Elsevier, vol. 344, pages 219-229.
    4. Po-Chou Shih & Chui-Yu Chiu & Chi-Hsun Chou, 2019. "Using Dynamic Adjusting NGHS-ANN for Predicting the Recidivism Rate of Commuted Prisoners," Mathematics, MDPI, vol. 7(12), pages 1-25, December.
    5. Khoroshiltseva, Marina & Slanzi, Debora & Poli, Irene, 2016. "A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices," Applied Energy, Elsevier, vol. 184(C), pages 1400-1410.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Tamás Bányai & Péter Veres, 2013. "Optimisation Of Knapsack Problem With Matlab, Based On Harmony Search Algorithm," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 7(1), pages 13-20, December.
    3. Ratanavaraha, Vatanavongs & Jomnonkwao, Sajjakaj, 2015. "Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation," Transport Policy, Elsevier, vol. 41(C), pages 136-146.
    4. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    5. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    6. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    7. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    8. A. Talha Yalta, 2013. "The Dynamics of Road Energy Demand and Illegal Fuel Activity in Turkey: A Rolling Window Analysis," Working Papers 1304, TOBB University of Economics and Technology, Department of Economics, revised Jul 2013.
    9. Altay, Elif Varol & Alatas, Bilal, 2020. "Randomness as source for inspiring solution search methods: Music based approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    10. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    11. Geem, Zong Woo, 2011. "Transport energy demand modeling of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 39(8), pages 4644-4650, August.
    12. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    13. Zhao, Jingjing & Heydari, Shahram & Forrest, Michael & Stevens, Alan & Preston, John, 2023. "Investigating correlates of personal and freight road transport energy consumption: A case study of England," Journal of Transport Geography, Elsevier, vol. 112(C).
    14. Hoxha, Julian & Çodur, Muhammed Yasin & Mustafaraj, Enea & Kanj, Hassan & El Masri, Ali, 2023. "Prediction of transportation energy demand in Türkiye using stacking ensemble models: Methodology and comparative analysis," Applied Energy, Elsevier, vol. 350(C).
    15. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    16. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    17. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    18. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    19. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    20. Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:232:y:2014:i:c:p:670-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.