IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p34-d192725.html
   My bibliography  Save this article

Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model

Author

Listed:
  • Germán Ramos Ruiz

    (School of Architecture, University of Navarra, 31009 Pamplona, Spain)

  • Eva Lucas Segarra

    (School of Architecture, University of Navarra, 31009 Pamplona, Spain)

  • Carlos Fernández Bandera

    (School of Architecture, University of Navarra, 31009 Pamplona, Spain)

Abstract

There is growing concern about how to mitigate climate change in which the reduction of CO 2 emissions plays an important role. Buildings have gained attention in recent years since they are responsible for around 30% of greenhouse gases. In this context, advance control strategies to optimize HVAC systems are necessary because they can provide significant energy savings whilst maintaining indoor thermal comfort. Simulation-based model predictive control (MPC) procedures allow an increase in building energy performance through the smart control of HVAC systems. The paper presents a methodology that overcomes one of the critical issues in using detailed building energy models in MPC optimizations—computational time. Through a case study, the methodology explains how to resolve this issue. Three main novel approaches are developed: a reduction in the search space for the genetic algorithm (NSGA-II) thanks to the use of the curve of free oscillation; a reduction in convergence time based on a process of two linked stages; and, finally, a methodology to measure, in a combined way, the temporal convergence of the algorithm and the precision of the obtained solution.

Suggested Citation

  • Germán Ramos Ruiz & Eva Lucas Segarra & Carlos Fernández Bandera, 2018. "Model Predictive Control Optimization via Genetic Algorithm Using a Detailed Building Energy Model," Energies, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:34-:d:192725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/34/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/34/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    3. Patteeuw, Dieter & Henze, Gregor P. & Helsen, Lieve, 2016. "Comparison of load shifting incentives for low-energy buildings with heat pumps to attain grid flexibility benefits," Applied Energy, Elsevier, vol. 167(C), pages 80-92.
    4. Jin Woo Moon & Kyungjae Kim & Hyunsuk Min, 2015. "ANN-Based Prediction and Optimization of Cooling System in Hotel Rooms," Energies, MDPI, vol. 8(10), pages 1-21, September.
    5. Pavlak, Gregory S. & Henze, Gregor P. & Cushing, Vincent J., 2015. "Evaluating synergistic effect of optimally controlling commercial building thermal mass portfolios," Energy, Elsevier, vol. 84(C), pages 161-176.
    6. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    7. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    8. Edorta Carrascal & Izaskun Garrido & Aitor J. Garrido & José María Sala, 2016. "Optimization of the Heating System Use in Aged Public Buildings via Model Predictive Control," Energies, MDPI, vol. 9(4), pages 1-20, March.
    9. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.
    10. Bruni, G. & Cordiner, S. & Mulone, V. & Sinisi, V. & Spagnolo, F., 2016. "Energy management in a domestic microgrid by means of model predictive controllers," Energy, Elsevier, vol. 108(C), pages 119-131.
    11. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    12. Fiorentini, Massimo & Wall, Josh & Ma, Zhenjun & Braslavsky, Julio H. & Cooper, Paul, 2017. "Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage," Applied Energy, Elsevier, vol. 187(C), pages 465-479.
    13. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    14. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    15. Li, Xiwang & Malkawi, Ali, 2016. "Multi-objective optimization for thermal mass model predictive control in small and medium size commercial buildings under summer weather conditions," Energy, Elsevier, vol. 112(C), pages 1194-1206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiao & Cao, Benyi & Pouramini, Somayeh, 2023. "Energy cost and consumption reduction of an office building by Chaotic Satin Bowerbird Optimization Algorithm with model predictive control and artificial neural network: A case study," Energy, Elsevier, vol. 270(C).
    2. Ali Saberi Derakhtenjani & Andreas K. Athienitis, 2021. "Model Predictive Control Strategies to Activate the Energy Flexibility for Zones with Hydronic Radiant Systems," Energies, MDPI, vol. 14(4), pages 1-19, February.
    3. Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "Quantum computing for future real-time building HVAC controls," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Fernández Bandera & Jose Pachano & Jaume Salom & Antonis Peppas & Germán Ramos Ruiz, 2020. "Photovoltaic Plant Optimization to Leverage Electric Self Consumption by Harnessing Building Thermal Mass," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    2. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    4. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    5. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    6. Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
    7. Yang, Shiyu & Wan, Man Pun, 2022. "Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system," Applied Energy, Elsevier, vol. 306(PB).
    8. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    9. Eva Lucas Segarra & Hu Du & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Methodology for the Quantification of the Impact of Weather Forecasts in Predictive Simulation Models," Energies, MDPI, vol. 12(7), pages 1-16, April.
    10. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    11. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    12. Reynolds, Jonathan & Ahmad, Muhammad Waseem & Rezgui, Yacine & Hippolyte, Jean-Laurent, 2019. "Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 699-713.
    13. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.
    14. Vicente Gutiérrez González & Lissette Álvarez Colmenares & Jesús Fernando López Fidalgo & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Uncertainy’s Indices Assessment for Calibrated Energy Models," Energies, MDPI, vol. 12(11), pages 1-18, May.
    15. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    17. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    19. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    20. Chen, Hanfei & Lin, ChihChieh & Longtin, Jon P., 2019. "Dynamic modeling and parameter optimization of a free-piston Vuilleumier heat pump with dwell-based motion," Applied Energy, Elsevier, vol. 242(C), pages 741-751.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:34-:d:192725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.