IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10145-d456892.html
   My bibliography  Save this article

Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate

Author

Listed:
  • Abdelhakim Mesloub

    (Department of Architectural Engineering, Ha’il University, Ha’il 2440, Saudi Arabia)

  • Aritra Ghosh

    (Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
    College of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Cornwall TR10 9FE, UK
    Renewable Energy, Stella Turk Building, University of Exeter, Penryn, Cornwall TR10 9FE, UK)

  • Mabrouk Touahmia

    (Department of Architectural Engineering, Ha’il University, Ha’il 2440, Saudi Arabia)

  • Ghazy Abdullah Albaqawy

    (Department of Architectural Engineering, Ha’il University, Ha’il 2440, Saudi Arabia)

  • Emad Noaime

    (Department of Architectural Engineering, Ha’il University, Ha’il 2440, Saudi Arabia)

  • Badr M. Alsolami

    (Islamic Architecture Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Mekkah 21955, Saudi Arabia)

Abstract

This paper presents the impact on energy performance and visual comfort of retrofitting photovoltaic integrated shading devices (PVSDs) to the façade of a prototype office building in a hot desert climate. EnergyPlus™ and the DIVA-for-Rhino© plug-ins were used to perform numerical simulations and parametric analyses examining the energy performance and visual comfort of five configurations, namely: (1) inclined single panel PVSDs, (2) unfilled eggcrate PVSDs, (3) a louvre PVSD of ten slats tilted 30° outward, (4) a louvre PVSD of five slats tilted 30° outward, and (5) an STPV module with 20% transparency which were then compared to a reference office building (ROB) model. The field measurements of an off-grid system at various tilt angles provided an optimum tilt angle of 30°. A 30° tilt was then integrated into some of the PVSD designs. The results revealed that the integration of PVSDs significantly improved overall energy performance and reduced glare. The unfilled eggcrate PVSD did not only have the highest conversion efficiency at ȵ 20% but generated extra energy as well; an essential feature in the hot desert climate of Saudi Arabia.

Suggested Citation

  • Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10145-:d:456892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Zubair & Ahmed Bilal Awan & Abdullah Al-Ahmadi & Ahmed G. Abo-Khalil, 2018. "NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device," Energies, MDPI, vol. 11(6), pages 1-20, May.
    2. Ghosh, Aritra & Bhandari, Shubhranshu & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Carbon counter electrode mesoscopic ambient processed & characterised perovskite for adaptive BIPV fenestration," Renewable Energy, Elsevier, vol. 145(C), pages 2151-2158.
    3. Abdelhakim Mesloub & Ghazy Abdullah Albaqawy & Mohd Zin Kandar, 2020. "The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings," Sustainability, MDPI, vol. 12(4), pages 1-38, February.
    4. Jessica Settino & Cristina Carpino & Stefania Perrella & Natale Arcuri, 2020. "Multi-Objective Analysis of a Fixed Solar Shading System in Different Climatic Areas," Energies, MDPI, vol. 13(12), pages 1-18, June.
    5. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    6. Omar S. Asfour, 2018. "Solar and Shading Potential of Different Configurations of Building Integrated Photovoltaics Used as Shading Devices Considering Hot Climatic Conditions," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    7. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
    8. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    9. Selvaraj, Prabhakaran & Ghosh, Aritra & Mallick, Tapas K. & Sundaram, Senthilarasu, 2019. "Investigation of semi-transparent dye-sensitized solar cells for fenestration integration," Renewable Energy, Elsevier, vol. 141(C), pages 516-525.
    10. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    11. Lopez-Ruiz, Hector G. & Blazquez, Jorge & Vittorio, Michele, 2020. "Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh," Energy Policy, Elsevier, vol. 140(C).
    12. Sung Kwon Jung & Youngchul Kim & Jin Woo Moon, 2020. "Performance Evaluation of Control Methods for PV-Integrated Shading Devices," Energies, MDPI, vol. 13(12), pages 1-21, June.
    13. Georgios D. Kontes & Georgios I. Giannakis & Philip Horn & Simone Steiger & Dimitrios V. Rovas, 2017. "Using Thermostats for Indoor Climate Control in Office Buildings: The Effect on Thermal Comfort," Energies, MDPI, vol. 10(9), pages 1-22, September.
    14. Khoroshiltseva, Marina & Slanzi, Debora & Poli, Irene, 2016. "A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices," Applied Energy, Elsevier, vol. 184(C), pages 1400-1410.
    15. Jayathissa, P. & Luzzatto, M. & Schmidli, J. & Hofer, J. & Nagy, Z. & Schlueter, A., 2017. "Optimising building net energy demand with dynamic BIPV shading," Applied Energy, Elsevier, vol. 202(C), pages 726-735.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    2. Wang, Jiayun & Li, Guo & Zhao, Dongliang, 2024. "Multi-objective optimization of an anti-reflection AlN/VO2/AlN thermochromic window for building energy saving," Energy, Elsevier, vol. 288(C).
    3. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.
    4. Haitham Esam Rababah & Azhar Ghazali & Mohd Hafizal Mohd Isa, 2021. "Building Integrated Photovoltaic (BIPV) in Southeast Asian Countries: Review of Effects and Challenges," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    5. Abdullah Shaher & Saad Alqahtani & Ali Garada & Liana Cipcigan, 2023. "Rooftop Solar Photovoltaic in Saudi Arabia to Supply Electricity Demand in Localised Urban Areas: A Study of the City of Abha," Energies, MDPI, vol. 16(11), pages 1-24, May.
    6. Li Zhu & Peng Wang & Yujiao Huo & Wei Tian & Yong Sun & Baoquan Yin, 2022. "Energy Savings Potential of Semitransparent Photovoltaic Skylights under Different Climate Conditions in China," Energies, MDPI, vol. 15(7), pages 1-17, March.
    7. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    8. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Corti & Pierluigi Bonomo & Francesco Frontini, 2023. "Paper Review of External Integrated Systems as Photovoltaic Shading Devices," Energies, MDPI, vol. 16(14), pages 1-21, July.
    2. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    4. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    6. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    7. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Yingying Zhou & Christiane Margerita Herr, 2023. "A Review of Advanced Façade System Technologies to Support Net-Zero Carbon High-Rise Building Design in Subtropical China," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    9. Wang, C. & Zhu, Y. & Qu, J. & Hu, H.D., 2018. "Automatic air temperature control in a container with an optic-variable wall," Applied Energy, Elsevier, vol. 224(C), pages 671-681.
    10. Abel Tablada & Vesna Kosorić & Huajing Huang & Ian Kevin Chaplin & Siu-Kit Lau & Chao Yuan & Stephen Siu-Yu Lau, 2018. "Design Optimization of Productive Façades: Integrating Photovoltaic and Farming Systems at the Tropical Technologies Laboratory," Sustainability, MDPI, vol. 10(10), pages 1-24, October.
    11. Daniel Efurosibina Attoye & Kheira Anissa Tabet Aoul & Ahmed Hassan, 2017. "A Review on Building Integrated Photovoltaic Façade Customization Potentials," Sustainability, MDPI, vol. 9(12), pages 1-24, December.
    12. de Almeida Rocha, Ana Paula & Reynoso-Meza, Gilberto & Oliveira, Ricardo C.L.F. & Mendes, Nathan, 2020. "A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection," Applied Energy, Elsevier, vol. 262(C).
    13. Li, Chunying & Zhang, Wankun & Wu, Juhu & Lyu, Yuanli & Tang, Haida, 2023. "Experimental study of a vertically mounted bifacial photovoltaic sunshade," Renewable Energy, Elsevier, vol. 219(P2).
    14. Alagar Karthick & Muthu Manokar Athikesavan & Manoj Kumar Pasupathi & Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aritra Ghosh, 2020. "Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module," Energies, MDPI, vol. 13(14), pages 1-12, July.
    15. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Chi, Fang'ai & Wang, Ruonan & Li, Gaomei & Xu, Liming & Wang, Yonghe & Peng, Changhai, 2020. "Integration of sun-tracking shading panels into window system towards maximum energy saving and non-glare daylighting," Applied Energy, Elsevier, vol. 260(C).
    17. Krarti, Moncef, 2021. "Evaluation of PV integrated sliding-rotating overhangs for US apartment buildings," Applied Energy, Elsevier, vol. 293(C).
    18. Mohammad Khairul Basher & Mohammad Nur-E-Alam & Md Momtazur Rahman & Steven Hinckley & Kamal Alameh, 2022. "Design, Development, and Characterization of Highly Efficient Colored Photovoltaic Module for Sustainable Buildings Applications," Sustainability, MDPI, vol. 14(7), pages 1-11, April.
    19. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Li Zhu & Peng Wang & Yujiao Huo & Wei Tian & Yong Sun & Baoquan Yin, 2022. "Energy Savings Potential of Semitransparent Photovoltaic Skylights under Different Climate Conditions in China," Energies, MDPI, vol. 15(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10145-:d:456892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.