IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp23-49.html
   My bibliography  Save this article

Review of simulation modeling for shading devices in buildings

Author

Listed:
  • Kirimtat, Ayca
  • Koyunbaba, Basak Kundakci
  • Chatzikonstantinou, Ioannis
  • Sariyildiz, Sevil

Abstract

Many countries around the world are confronted with the challenge of decreasing energy consumption, while the use of electrical appliances is continuously increasing in buildings. The requirement to minimize the energy consumption can be fulfilled by revaluating architectural aspects. One of these aspects is related to overheating problems, caused by facades with large, glazed portions. In such designs, shading elements must carefully be integrated and considered at an early-design stage in the design process. Shading of buildings is crucial especially in climates with hot summer. It is significant to protect the window from solar radiation in summer while allowing maximum solar radiation in winter. For this reason, precise figures of their performance are needed. As such, simulation tools are often used for identifying the most suitable shading element that suits the building.

Suggested Citation

  • Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:23-49
    DOI: 10.1016/j.rser.2015.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, G.A & Kalogirou, S.A & Tassou, S.A & Wrobel, L.C, 2000. "Modeling of the modern houses of Cyprus and energy consumption analysis," Energy, Elsevier, vol. 25(10), pages 915-937.
    2. tim johnson & Glenn Adelson & Bouffard A, 2014. "My Title," Working Paper 185881, Harvard University OpenScholar.
    3. Liu, Mingzhe & Wittchen, Kim Bjarne & Heiselberg, Per Kvols, 2015. "Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark," Applied Energy, Elsevier, vol. 145(C), pages 43-51.
    4. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    5. Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
    6. Tian, Cheng & Chen, Tingyao & Chung, Tse-ming, 2014. "Experimental and simulating examination of computer tools, Radlink and DOE2, for daylighting and energy simulation with venetian blinds," Applied Energy, Elsevier, vol. 124(C), pages 130-139.
    7. Datta, Gouri, 2001. "Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation," Renewable Energy, Elsevier, vol. 23(3), pages 497-507.
    8. Cho, Sung-Hwan & Shin, Kee-Shik & Zaheer-Uddin, M., 1995. "The effect of slat angle of windows with venetian blinds on heating and cooling loads of buildings in South Korea," Energy, Elsevier, vol. 20(12), pages 1225-1236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    2. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    3. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    4. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    5. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2016. "Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate," Applied Energy, Elsevier, vol. 184(C), pages 155-170.
    6. Danijela Nikolic & Slobodan Djordjevic & Jasmina Skerlic & Jasna Radulovic, 2020. "Energy Analyses of Serbian Buildings with Horizontal Overhangs: A Case Study," Energies, MDPI, vol. 13(17), pages 1-20, September.
    7. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
    8. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    9. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    10. Wu, Yujie & Kämpf, Jérôme H. & Scartezzini, Jean-Louis, 2019. "Automated ‘Eye-sight’ Venetian blinds based on an embedded photometric device with real-time daylighting computing," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    12. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    13. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    14. Krarti, Moncef, 2021. "Performance of PV integrated dynamic overhangs applied to US homes," Energy, Elsevier, vol. 230(C).
    15. Wong, Ing Liang, 2017. "A review of daylighting design and implementation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 959-968.
    16. Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
    17. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    18. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    19. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    20. Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:23-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.