IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i3p866-883.html
   My bibliography  Save this article

Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India

Author

Listed:
  • Indraganti, Madhavi

Abstract

There is little thermal comfort research in residential environments reported from India. Energy consumption in Indian residential buildings is one of the highest, increasing at a phenomenal rate. Indian standards advocate two narrow ranges of temperatures for all building and climate types. In this context, a field study in summer and monsoon was conducted following Class-II protocols, for three months in 2008, in naturally ventilated apartment buildings in Hyderabad. Over a 100 subjects involved, giving 3962 datasets. In May, most of the subjects were uncomfortable, preferring a temperature on the cooler side of the neutrality, despite accepting their thermal environments. Thermal sensation, preference and acceptance improved in June and July as temperature receded. Humidity did not affect comfort sensation much, as summer was hot and dry. Conversely, increase in humidity adversely affected the thermal comfort in June. Adaptive use of controls resulted in moderate air movement indoors, adequate for sweat evaporation most of the time. The subjects used traditional ensembles and slowed down their activities adaptively to restore thermal comfort. Clothing adaptation was found to be impeded by many socio-cultural and economic aspects. The comfort band (voting within -1 and +1) based on the regression analysis was found to be 26-32.45 °C with the neutral temperature at 29.23 °C. This is way above the limits (23-26 °C) set by Indian standards. The PMV was always found to be higher than the actual sensation vote. These findings have far reaching energy implications in a developing country like India.

Suggested Citation

  • Indraganti, Madhavi, 2010. "Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India," Applied Energy, Elsevier, vol. 87(3), pages 866-883, March.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:3:p:866-883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00375-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    2. Ogbonna, A.C. & Harris, D.J., 2008. "Thermal comfort in sub-Saharan Africa: Field study report in Jos-Nigeria," Applied Energy, Elsevier, vol. 85(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indraganti, Madhavi, 2011. "Thermal comfort in apartments in India: Adaptive use of environmental controls and hindrances," Renewable Energy, Elsevier, vol. 36(4), pages 1182-1189.
    2. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
    3. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    4. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    5. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    6. Zhao, Xi & Nie, Ping & Zhu, Jiayin & Tong, Liping & Liu, Yingfang, 2020. "Evaluation of thermal environments for cliff-side cave dwellings in cold region of China," Renewable Energy, Elsevier, vol. 158(C), pages 154-166.
    7. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    8. Nutkiewicz, Alex & Jain, Rishee K. & Bardhan, Ronita, 2018. "Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India," Applied Energy, Elsevier, vol. 231(C), pages 433-445.
    9. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    10. Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
    11. Barun Mukhopadhyay & Charles A. Weitz, 2022. "Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    12. Singh, Manoj Kumar & Mahapatra, Sadhan & Atreya, S.K., 2011. "Adaptive thermal comfort model for different climatic zones of North-East India," Applied Energy, Elsevier, vol. 88(7), pages 2420-2428, July.
    13. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Simulation of potential standalone liquid desiccant cooling cycles," Energy, Elsevier, vol. 81(C), pages 652-661.
    14. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    15. Nutkiewicz, Alex & Mastrucci, Alessio & Rao, Narasimha D. & Jain, Rishee K., 2022. "Cool roofs can mitigate cooling energy demand for informal settlement dwellers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    2. Basole, Amit & Basu, Deepankar, 2015. "Fuelling Calorie Intake Decline: Household-Level Evidence from Rural India," World Development, Elsevier, vol. 68(C), pages 82-95.
    3. Klege, Rebecca A. & Amuakwa-Mensah, Franklin & Visser, Martine, 2022. "Tenancy and energy choices in Rwanda. A replication and extension study," World Development Perspectives, Elsevier, vol. 26(C).
    4. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    5. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    6. Jeuland, Marc & Fetter, T. Robert & Li, Yating & Pattanayak, Subhrendu K. & Usmani, Faraz & Bluffstone, Randall A. & Chávez, Carlos & Girardeau, Hannah & Hassen, Sied & Jagger, Pamela & Jaime, Mónica , 2021. "Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Cheng, Chao-yo & Urpelainen, Johannes, 2014. "Fuel stacking in India: Changes in the cooking and lighting mix, 1987–2010," Energy, Elsevier, vol. 76(C), pages 306-317.
    8. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    9. Adeyemi Oginni, 2018. "Comparative Analysis of the Thermal Performance of Selected Public School Classroom Buildingin Lagos, Nigeria," Proceedings of the 8th International RAIS Conference, March 26-27, 2018 013, Research Association for Interdisciplinary Studies.
    10. Abdimalik Ali Warsame, 2022. "The Impact of Urbanization on Energy Demand: An Empirical Evidence from Somalia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 383-389.
    11. Salim, Ruhul & Yao, Yao & Chen, George S., 2017. "Does human capital matter for energy consumption in China?," Energy Economics, Elsevier, vol. 67(C), pages 49-59.
    12. Raul Jimenez & Ariel Yépez-García, 2016. "Composition and Sensitivity of Residential Energy Consumption," IDB Publications (Working Papers) 95257, Inter-American Development Bank.
    13. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    14. Jack Gregory & David I. Stern, 2012. "Fuel Choices in Rural Maharashtra," CCEP Working Papers 1207, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    15. Ahmad, Sohail & Mathai, Manu V. & Parayil, Govindan, 2014. "Household electricity access, availability and human well-being: Evidence from India," Energy Policy, Elsevier, vol. 69(C), pages 308-315.
    16. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    17. Christophe Muller & Huijie Yan, 2018. "Household Fuel Use in Rural China," AMSE Working Papers 1808, Aix-Marseille School of Economics, France.
    18. Shuxin Mao & Sha Qiu & Tao Li & Mingfang Tang & Hongbing Deng & Hua Zheng, 2020. "Using Characteristic Energy to Study Rural Ethnic Minorities’ Household Energy Consumption and Its Impact Factors in Chongqing, China," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    19. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter & Marenya, Paswel, 2017. "A ladder within a ladder: Understanding the factors influencing a household's domestic use of electricity in four African countries," Energy Economics, Elsevier, vol. 66(C), pages 167-181.
    20. Weibin Lin & Bin Chen & Shichao Luo & Li Liang, 2014. "Factor Analysis of Residential Energy Consumption at the Provincial Level in China," Sustainability, MDPI, vol. 6(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:3:p:866-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.