Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.08.107
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Luo, Xiaobo & Wang, Meihong & Oko, Eni & Okezue, Chima, 2014. "Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network," Applied Energy, Elsevier, vol. 132(C), pages 610-620.
- Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
- Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
- Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
- Tokimatsu, Koji & Konishi, Satoshi & Ishihara, Keiichi & Tezuka, Tetsuo & Yasuoka, Rieko & Nishio, Masahiro, 2016. "Role of innovative technologies under the global zero emissions scenarios," Applied Energy, Elsevier, vol. 162(C), pages 1483-1493.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ungar, Pietro & Schifflechner, Christopher & Wieland, Christoph & Spliethoff, Hartmut & Manfrida, Giampaolo, 2024. "Thermo-economic comparison of CO2 and water as a heat carrier for long-distance heat transport from geothermal sources: A Bavarian case study," Energy, Elsevier, vol. 298(C).
- Jaskólski, Marcin & Reński, Andrzej & Minkiewicz, Tomasz, 2017. "Thermodynamic and economic analysis of nuclear power unit operating in partial cogeneration mode to produce electricity and district heat," Energy, Elsevier, vol. 141(C), pages 2470-2483.
- Rämä, Miika & Leurent, Martin & Devezeaux de Lavergne, Jean-Guy, 2020. "Flexible nuclear co-generation plant combined with district heating and a large-scale heat storage," Energy, Elsevier, vol. 193(C).
- Zhang, Chenghu & Li, Yaping, 2017. "Thermodynamic analysis on theoretical models of cycle combined heat exchange process: The reversible heat exchange process," Energy, Elsevier, vol. 124(C), pages 565-578.
- Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
- Li, Yemao & Pan, Wenbiao & Xia, Jianjun & Jiang, Yi, 2019. "Combined heat and water system for long-distance heat transportation," Energy, Elsevier, vol. 172(C), pages 401-408.
- Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018.
"Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries,"
Energy, Elsevier, vol. 149(C), pages 454-472.
- Martin Leurent & Pascal da Costa & Urban Persson & Miika Rämä & Frédéric Jasserand, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Post-Print hal-01714973, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jie, Pengfei & Zhao, Wanyue & Li, Fating & Wei, Fengjun & Li, Jing, 2020. "Optimizing the pressure drop per unit length of district heating piping networks from an environmental perspective," Energy, Elsevier, vol. 202(C).
- Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
- Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
- Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
- Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
- Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
- Dénarié, A. & Aprile, M. & Motta, M., 2023. "Dynamical modelling and experimental validation of a fast and accurate district heating thermo-hydraulic modular simulation tool," Energy, Elsevier, vol. 282(C).
- Koji Tokimatsu & Shinsuke Murakami & Tsuyoshi Adachi & Ryota Ii & Rieko Yasuoka & Masahiro Nishio, 2017. "Long-term demand and supply of non-ferrous mineral resources by a mineral balance model," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(3), pages 193-206, October.
- Lin, Chih-Wei & Nazeri, Mahmoud & Bhattacharji, Ayan & Spicer, George & Maroto-Valer, M. Mercedes, 2016. "Apparatus and method for calibrating a Coriolis mass flow meter for carbon dioxide at pressure and temperature conditions represented to CCS pipeline operations," Applied Energy, Elsevier, vol. 165(C), pages 759-764.
- Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
- Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
- Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
- Kruczek, Tadeusz, 2015. "Use of infrared camera in energy diagnostics of the objects placed in open air space in particular at non-isothermal sky," Energy, Elsevier, vol. 91(C), pages 35-47.
- Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
- Lončar, D. & Ridjan, I., 2012. "Medium term development prospects of cogeneration district heating systems in transition country – Croatian case," Energy, Elsevier, vol. 48(1), pages 32-39.
- Arabkoohsar, Ahmad & Alsagri, Ali Sulaiman, 2020. "A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems," Energy, Elsevier, vol. 193(C).
- Feng, Jing-Chun & Yan, Jinyue & Yu, Zhi & Zeng, Xuelan & Xu, Weijia, 2018. "Case study of an industrial park toward zero carbon emission," Applied Energy, Elsevier, vol. 209(C), pages 65-78.
- Daniilidis, Alexandros & Scholten, Tjardo & Hooghiem, Joram & De Persis, Claudio & Herber, Rien, 2017. "Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks," Applied Energy, Elsevier, vol. 204(C), pages 254-270.
More about this item
Keywords
Pipeline optimization; Heat transportation; Decision-making problem; Life cycle cost modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:164-176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.