IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p113-d193969.html
   My bibliography  Save this article

Automated Statistical Methods for Fault Detection in District Heating Customer Installations

Author

Listed:
  • Sara Månsson

    (Department of Energy Sciences, Faculty of Engineering, Lund University, P.O.Box 118, SE-221 00 Lund, Sweden
    Flemish Institute for Technological Research, VITO, Boeretang 200, BE-2400 Mol, Belgium)

  • Kristin Davidsson

    (Department of Energy Sciences, Faculty of Engineering, Lund University, P.O.Box 118, SE-221 00 Lund, Sweden)

  • Patrick Lauenburg

    (Department of Energy Sciences, Faculty of Engineering, Lund University, P.O.Box 118, SE-221 00 Lund, Sweden)

  • Marcus Thern

    (Department of Energy Sciences, Faculty of Engineering, Lund University, P.O.Box 118, SE-221 00 Lund, Sweden)

Abstract

In order to develop more sustainable district heating systems, the district heating sector is currently trying to increase the energy efficiency of these systems. One way of doing so is to identify customer installations in the systems that have poor cooling performance. This study aimed to develop an algorithm that was able to detect the poorly performing installations automatically using meter readings from the installations. The algorithm was developed using statistical methods and was tested on a data set consisting of data from 3000 installations located in a district heating system in Sweden. As many as 1273 installations were identified by the algorithm as having poor cooling performance. This clearly shows that it is of major interest to the district heating companies to identify the installations with poor cooling performance rapidly and automatically, in order to rectify them as soon as possible.

Suggested Citation

  • Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:113-:d:193969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nord, Natasa & Løve Nielsen, Elise Kristine & Kauko, Hanne & Tereshchenko, Tymofii, 2018. "Challenges and potentials for low-temperature district heating implementation in Norway," Energy, Elsevier, vol. 151(C), pages 889-902.
    2. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    3. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    4. Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
    5. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    6. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    7. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jingjing & Zhang, Huan & Wang, Yaran & Zhu, Zhaozhe & Bai, He & Li, Qicheng & Zheng, Lijun & Gao, Xinyong & You, Shijun, 2023. "Difference analysis and recognition of hydraulic oscillation by two types of sudden faults on long-distance district heating pipeline," Energy, Elsevier, vol. 284(C).
    2. Søndergaard, Henrik Alexander Nissen & Shaker, Hamid Reza & Jørgensen, Bo Nørregaard, 2024. "Contextual operational energy performance indexing of district heating consumers," Energy, Elsevier, vol. 302(C).
    3. Månsson, Sara & Johansson Kallioniemi, Per-Olof & Thern, Marcus & Van Oevelen, Tijs & Sernhed, Kerstin, 2019. "Faults in district heating customer installations and ways to approach them: Experiences from Swedish utilities," Energy, Elsevier, vol. 180(C), pages 163-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Månsson, Sara & Johansson Kallioniemi, Per-Olof & Thern, Marcus & Van Oevelen, Tijs & Sernhed, Kerstin, 2019. "Faults in district heating customer installations and ways to approach them: Experiences from Swedish utilities," Energy, Elsevier, vol. 180(C), pages 163-174.
    2. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    3. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    4. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    5. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    6. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    7. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    8. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    10. Neumayer, Martin & Stecher, Dominik & Grimm, Sebastian & Maier, Andreas & Bücker, Dominikus & Schmidt, Jochen, 2023. "Fault and anomaly detection in district heating substations: A survey on methodology and data sets," Energy, Elsevier, vol. 276(C).
    11. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    12. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    13. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    14. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
    15. Sernhed, Kerstin & Lygnerud, Kristina & Werner, Sven, 2018. "Synthesis of recent Swedish district heating research," Energy, Elsevier, vol. 151(C), pages 126-132.
    16. Arabkoohsar, A., 2019. "Non-uniform temperature district heating system with decentralized heat pumps and standalone storage tanks," Energy, Elsevier, vol. 170(C), pages 931-941.
    17. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    18. Jangsten, M. & Kensby, J. & Dalenbäck, J.-O. & Trüschel, A., 2017. "Survey of radiator temperatures in buildings supplied by district heating," Energy, Elsevier, vol. 137(C), pages 292-301.
    19. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    20. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:113-:d:193969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.