IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v175y2016icp54-68.html
   My bibliography  Save this article

Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis

Author

Listed:
  • Hosseini, Tahereh
  • Haque, Nawshad
  • Selomulya, Cordelia
  • Zhang, Lian

Abstract

This report examined the technical and economic feasibility of four process scenarios for the mineral carbonation of Victorian brown coal fly ash. The first two design scenarios aimed to compare the performance of two leaching agents, namely, ammonium chloride (NH4Cl) and a mixture of ammonium chloride and hydrochloric acid (NH4Cl+HCl), on product yields and cost, whereas the other two scenarios were designed to recycle the leaching residue via single or multi-stage leaching steps to co-produce a carbonate precipitate and cement additive-grade by-product. Detailed designs were developed in Aspen Plus to determine the technical and economic potential of the selected process configurations and identify the concept with the lowest overall costs relative to the product yields. As has been confirmed, the overall production costs and carbon dioxide (CO2) capture cost of the evaluated process scenarios range from ∼$61 to 333 per tonne of product and from $135 to 1091 per tonne of CO2, respectively. The process scenario that used NH4Cl+HCl as the leaching reagent had a significantly larger cost and a higher carbonation conversion compared to the other scenarios. The process configuration that recycled the leaching residue resulted in the lowest cost per tonne of fly ash and the lowest CO2 capture cost among the four proposed scenarios. The largest net present value (NPV) and the internal rate of return (IRR) as well as the shortest payback period for this scenario further confirmed its highest profitability. The NPV, IRR and payback period of $49million, 53.4% and 2.3years, respectively, could be achieved using Victorian brown coal fly ash in this scenario. A sensitivity analysis suggests that the change in the ammonium chloride price exerts the largest effect on the production cost. A 50% increase in the ammonium chloride cost could result in the production cost increasing by 29.5%. Additionally, the selling price of the carbon precipitate product and the production cost strongly affect the financial indices. However, the production of the cement-additive by-product exerts a marginal role on the process profit. The extra income created from the cement-additive by-product is counteracted by the larger cost related to the purchase and consumption of hydrochloric acid used in the final leaching stage.

Suggested Citation

  • Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
  • Handle: RePEc:eee:appene:v:175:y:2016:i:c:p:54-68
    DOI: 10.1016/j.apenergy.2016.04.093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916305591
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.04.093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    2. Ukwattage, N.L. & Ranjith, P.G. & Wang, S.H., 2013. "Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation," Energy, Elsevier, vol. 52(C), pages 230-236.
    3. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    4. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    5. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    6. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    7. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    8. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
    9. Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
    10. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    11. Ron Zevenhoven & Johan Fagerlund & Joel Kibiwot Songok, 2011. "CO 2 mineral sequestration: developments toward large‐scale application," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(1), pages 48-57, March.
    12. Nduagu, Experience & Romão, Inês & Fagerlund, Johan & Zevenhoven, Ron, 2013. "Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration," Applied Energy, Elsevier, vol. 106(C), pages 116-126.
    13. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2009. "Fixation of carbon dioxide by producing hydromagnesite from serpentinite," Applied Energy, Elsevier, vol. 86(2), pages 214-218, February.
    14. Strube, R. & Pellegrini, G. & Manfrida, G., 2011. "The environmental impact of post-combustion CO2 capture with MEA, with aqueous ammonia, and with an aqueous ammonia-ethanol mixture for a coal-fired power plant," Energy, Elsevier, vol. 36(6), pages 3763-3770.
    15. Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dion M. F. Frampton & Nawshad Haque & David I. Verrelli & Geoff J. Dumsday & Kim Jye Lee-Chang, 2021. "Process Design Guided by Life Cycle Assessment to Reduce Greenhouse Gas-Related Environmental Impacts of Food Processing," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    2. Janusz Zdeb & Natalia Howaniec, 2022. "Energy Sector Derived Combustion Products Utilization—Current Advances in Carbon Dioxide Mineralization," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    4. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    5. Jo, Hoyong & Lee, Min-Gu & Park, Jinwon & Jung, Kwang-Deog, 2017. "Preparation of high-purity nano-CaCO3 from steel slag," Energy, Elsevier, vol. 120(C), pages 884-894.
    6. Wang, Chang'an & Wu, Song & Lv, Qiang & Liu, Xuan & Chen, Wufeng & Che, Defu, 2017. "Study on correlations of coal chemical properties based on database of real-time data," Applied Energy, Elsevier, vol. 204(C), pages 1115-1123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    2. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    3. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    4. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    5. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    6. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    7. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    8. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    9. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    10. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
    11. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    12. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    13. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    14. Bernard Jomari B. Razote & Mark Kenneth M. Maranan & Ramon Christian P. Eusebio & Richard D. Alorro & Arnel B. Beltran & Aileen H. Orbecido, 2019. "Determination of the Carbon Dioxide Sequestration Potential of a Nickel Mine Mixed Dump through Leaching Tests," Energies, MDPI, vol. 12(15), pages 1-19, July.
    15. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    16. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    17. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    18. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    19. Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
    20. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:175:y:2016:i:c:p:54-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.