IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v115y2014icp405-410.html
   My bibliography  Save this article

A high-performance alkaline exchange membrane direct formate fuel cell

Author

Listed:
  • Zeng, L.
  • Tang, Z.K.
  • Zhao, T.S.

Abstract

This paper reports on a single alkaline exchange membrane direct formate fuel cell (AEM DFFC) consisting of a carbon-supported palladium catalyst at the anode, a quaternized polysulfone membrane, and a non-precious Fe–Co catalyst at the cathode. It is demonstrated that the AEM DFFC yields a peak power density of 130mWcm−2 with 5M potassium formate (HCOOK) at 80°C. It is further shown that with the addition of KOH to the anolyte, the peak power density rises to as high as 250mWcm−2 at the same operating temperature. In addition, the AEM DFFC was also tested at 100mAcm−2 for more than 130h and no significant degradation in performance is found. The results reported in this work suggest that formate salt (HCOOM, M+=Na+ or K+) is a potential fuel for alkaline-type direct liquid fuel cells.

Suggested Citation

  • Zeng, L. & Tang, Z.K. & Zhao, T.S., 2014. "A high-performance alkaline exchange membrane direct formate fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 405-410.
  • Handle: RePEc:eee:appene:v:115:y:2014:i:c:p:405-410
    DOI: 10.1016/j.apenergy.2013.11.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.11.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Do-Hyeong Kim & Moon-Sung Kang, 2020. "Pore-Filled Anion-Exchange Membranes with Double Cross-Linking Structure for Fuel Cells and Redox Flow Batteries," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Wang, L.Q. & Bellini, M. & Filippi, J. & Folliero, M. & Lavacchi, A. & Innocenti, M. & Marchionni, A. & Miller, H.A. & Vizza, F., 2016. "Energy efficiency of platinum-free alkaline direct formate fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 479-487.
    3. Muneeb, Omar & Do, Emily & Boyd, Desiree & Perez, Josh & Haan, John L., 2019. "PdCu/C anode catalysts for the alkaline ascorbate fuel cell," Applied Energy, Elsevier, vol. 235(C), pages 473-479.
    4. Deng, Hao & Wang, Dawei & Wang, Renfang & Xie, Xu & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell," Applied Energy, Elsevier, vol. 183(C), pages 1272-1278.
    5. Saric, Steven & Biggs, Brenna & Janbahan, Mika & Hamilton, Ryan & Do, Huy K. & Mayoral, Salvador & Haan, John L., 2016. "An integrated device to convert carbon dioxide to energy," Applied Energy, Elsevier, vol. 183(C), pages 1346-1350.
    6. Hamish Andrew Miller & Jacopo Ruggeri & Andrea Marchionni & Marco Bellini & Maria Vincenza Pagliaro & Carlo Bartoli & Andrea Pucci & Elisa Passaglia & Francesco Vizza, 2018. "Improving the Energy Efficiency of Direct Formate Fuel Cells with a Pd/C-CeO 2 Anode Catalyst and Anion Exchange Ionomer in the Catalyst Layer," Energies, MDPI, vol. 11(2), pages 1-12, February.
    7. Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
    8. Chao, Shujun & Zhang, Yatian & Wang, Kui & Bai, Zhengyu & Yang, Lin, 2016. "Flower–like Ni and N codoped hierarchical porous carbon microspheres with enhanced performance for fuel cell storage," Applied Energy, Elsevier, vol. 175(C), pages 421-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:115:y:2014:i:c:p:405-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.