IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v177y2019icp247-261.html
   My bibliography  Save this article

Bi-objective optimal design of plug-in hybrid electric propulsion system for ships

Author

Listed:
  • Jianyun, Zhu
  • Li, Chen
  • Lijuan, Xia
  • Bin, Wang

Abstract

Growing concerns about reducing fuel consumption and global greenhouse gas (GHG) emissions have forced the shipping industry to accelerate the development of plug-in hybrid electric propulsion systems (HEPSs). However, the design optimization of plug-in HEPSs with the single objective of saving fuel may result in increased GHG emissions. This study proposes a bi-objective optimization by considering not only fuel consumption but also GHG emissions. The NSGA-II method is developed to explore the Pareto optimal solution set. A real-time hardware-in-the-loop experimental platform is built to validate the effectiveness of the optimization. The experimental results show that the optimal design selected from the Pareto solution set of the bi-objective optimization is closer to the ideal point than the optimal designs via the single-objective optimization pursuing either minimum fuel consumption or minimum GHG emissions. Further, sensitivity analysis is conducted. It is found that three variables (motor rotor diameter, motor rotor length, and gear ratio) are of local optimum at the Pareto front; and two (number of battery modules and lower bound of the battery state of charge) are of strong sensitivity regarding the contradiction between fuel consumption and GHG emissions.

Suggested Citation

  • Jianyun, Zhu & Li, Chen & Lijuan, Xia & Bin, Wang, 2019. "Bi-objective optimal design of plug-in hybrid electric propulsion system for ships," Energy, Elsevier, vol. 177(C), pages 247-261.
  • Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:247-261
    DOI: 10.1016/j.energy.2019.04.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Díaz-de-Baldasano, Maria C. & Mateos, Francisco J. & Núñez-Rivas, Luis R. & Leo, Teresa J., 2014. "Conceptual design of offshore platform supply vessel based on hybrid diesel generator-fuel cell power plant," Applied Energy, Elsevier, vol. 116(C), pages 91-100.
    2. Hung, Yi-Hsuan & Tung, Yu-Ming & Chang, Chun-Hsin, 2016. "Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain," Applied Energy, Elsevier, vol. 173(C), pages 184-196.
    3. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    4. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    5. Ribau, João P. & Silva, Carla M. & Sousa, João M.C., 2014. "Efficiency, cost and life cycle CO2 optimization of fuel cell hybrid and plug-in hybrid urban buses," Applied Energy, Elsevier, vol. 129(C), pages 320-335.
    6. Ovrum, E. & Bergh, T.F., 2015. "Modelling lithium-ion battery hybrid ship crane operation," Applied Energy, Elsevier, vol. 152(C), pages 162-172.
    7. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
    8. Lincun Fang & Shiyin Qin & Gang Xu & Tianli Li & Kemin Zhu, 2011. "Simultaneous Optimization for Hybrid Electric Vehicle Parameters Based on Multi-Objective Genetic Algorithms," Energies, MDPI, vol. 4(3), pages 1-13, March.
    9. Tsolakis, A. & Megaritis, A. & Wyszynski, M.L. & Theinnoi, K., 2007. "Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 32(11), pages 2072-2080.
    10. Chen, Bo-Chiuan & Wu, Yuh-Yih & Tsai, Hsien-Chi, 2014. "Design and analysis of power management strategy for range extended electric vehicle using dynamic programming," Applied Energy, Elsevier, vol. 113(C), pages 1764-1774.
    11. Zhou, Guanghui & Ou, Xunmin & Zhang, Xiliang, 2013. "Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions," Energy Policy, Elsevier, vol. 59(C), pages 875-884.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan P. Torreglosa & Enrique González-Rivera & Pablo García-Triviño & David Vera, 2022. "Performance Analysis of a Hybrid Electric Ship by Real-Time Verification," Energies, MDPI, vol. 15(6), pages 1-22, March.
    2. Zhu, Jianyun & Chen, Li, 2023. "A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran," Applied Energy, Elsevier, vol. 350(C).
    3. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    4. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
    6. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    7. Perčić, Maja & Frković, Lovro & Pukšec, Tomislav & Ćosić, Boris & Li, Oi Lun & Vladimir, Nikola, 2022. "Life-cycle assessment and life-cycle cost assessment of power batteries for all-electric vessels for short-sea navigation," Energy, Elsevier, vol. 251(C).
    8. Maja Perčić & Nikola Vladimir & Marija Koričan, 2021. "Electrification of Inland Waterway Ships Considering Power System Lifetime Emissions and Costs," Energies, MDPI, vol. 14(21), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jianyun & Chen, Li & Wang, Bin & Xia, Lijuan, 2018. "Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel," Applied Energy, Elsevier, vol. 226(C), pages 423-436.
    2. Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
    3. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    4. Menglin Li & Haoran Liu & Mei Yan & Hongyang Xu & Hongwen He, 2022. "A Novel Multi-Objective Energy Management Strategy for Fuel Cell Buses Quantifying Fuel Cell Degradation as Operating Cost," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    5. Fuquan Zhao & Kangda Chen & Han Hao & Zongwei Liu, 2020. "Challenges, Potential and Opportunities for Internal Combustion Engines in China," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    6. Xu, Liangfei & Mueller, Clemens David & Li, Jianqiu & Ouyang, Minggao & Hu, Zunyan, 2015. "Multi-objective component sizing based on optimal energy management strategy of fuel cell electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 664-674.
    7. Yu, Xiao & Lin, Cheng & Zhao, Mingjie & Yi, Jiang & Su, Yue & Liu, Huimin, 2022. "Optimal energy management strategy of a novel hybrid dual-motor transmission system for electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    8. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Li, Tianyu & Huang, Lingtao & Liu, Huiying, 2019. "Energy management and economic analysis for a fuel cell supercapacitor excavator," Energy, Elsevier, vol. 172(C), pages 840-851.
    10. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    11. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    12. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    13. Yiding, Li & Wenwei, Wang & Cheng, Lin & Xiaoguang, Yang & Fenghao, Zuo, 2021. "A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression," Energy, Elsevier, vol. 215(PA).
    14. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    15. Felipe Jiménez & Wilmar Cabrera-Montiel, 2014. "System for Road Vehicle Energy Optimization Using Real Time Road and Traffic Information," Energies, MDPI, vol. 7(6), pages 1-23, June.
    16. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    17. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    18. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    19. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    20. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:177:y:2019:i:c:p:247-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.