IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2433-d357232.html
   My bibliography  Save this article

Battery Electric Vehicle Eco-Cooperative Adaptive Cruise Control in the Vicinity of Signalized Intersections

Author

Listed:
  • Hao Chen

    (Virginia Tech Transportation Institute, 3500 Transportation Research Plaza, Blacksburg, VA 24061, USA)

  • Hesham A. Rakha

    (Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 3500 Transportation Research Plaza, Blacksburg, VA 24061, USA)

Abstract

This study develops a connected eco-driving controller for battery electric vehicles (BEVs), the BEV Eco-Cooperative Adaptive Cruise Control at Intersections (Eco-CACC-I). The developed controller can assist BEVs while traversing signalized intersections with minimal energy consumption. The calculation of the optimal vehicle trajectory is formulated as an optimization problem under the constraints of (1) vehicle acceleration/deceleration behavior, defined by a vehicle dynamics model; (2) vehicle energy consumption behavior, defined by a BEV energy consumption model; and (3) the relationship between vehicle speed, location, and signal timing, defined by vehicle characteristics and signal phase and timing (SPaT) data shared under a connected vehicle environment. The optimal speed trajectory is computed in real-time by the proposed BEV eco-CACC-I controller, so that a BEV can follow the optimal speed while negotiating a signalized intersection. The proposed BEV controller was tested in a case study to investigate its performance under various speed limits, roadway grades, and signal timings. In addition, a comparison of the optimal speed trajectories for BEVs and internal combustion engine vehicles (ICEVs) was conducted to investigate the impact of vehicle engine types on eco-driving solutions. Lastly, the proposed controller was implemented in microscopic traffic simulation software to test its networkwide performance. The test results from an arterial corridor with three signalized intersections demonstrate that the proposed controller can effectively reduce stop-and-go traffic in the vicinity of signalized intersections and that the BEV Eco-CACC-I controller produces average savings of 9.3% in energy consumption and 3.9% in vehicle delays.

Suggested Citation

  • Hao Chen & Hesham A. Rakha, 2020. "Battery Electric Vehicle Eco-Cooperative Adaptive Cruise Control in the Vicinity of Signalized Intersections," Energies, MDPI, vol. 13(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2433-:d:357232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    2. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bas, Javier & Zofío, José L. & Cirillo, Cinzia & Chen, Hao & Rakha, Hesham A., 2022. "Policy and industry implications of the potential market penetration of electric vehicles with eco-cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 242-256.
    2. Wang, Pangwei & Wang, Xindi & Ye, Rongsheng & Sun, Yuanzhe & Liu, Cheng & Zhang, Juan, 2024. "Eco-driving-based mixed vehicular platoon control model for successive signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    3. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangyang & Duan, Xiongbo & Fu, Jianqin & Liu, Jingping & Wang, Shuqian & Dong, Hao & Xie, Yunkun, 2019. "Development of a method for on-board measurement of instant engine torque and fuel consumption rate based on direct signal measurement and RGF modelling under vehicle transient operating conditions," Energy, Elsevier, vol. 189(C).
    2. Wang, Jinghui & Rakha, Hesham A., 2016. "Fuel consumption model for conventional diesel buses," Applied Energy, Elsevier, vol. 170(C), pages 394-402.
    3. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    4. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    5. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    7. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    8. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    9. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    10. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    11. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    12. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    13. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    14. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    15. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    16. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    17. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    18. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    19. Wojciech Adamski & Krzysztof Brzozowski & Jacek Nowakowski & Tomasz Praszkiewicz & Tomasz Knefel, 2021. "Excess Fuel Consumption Due to Selection of a Lower Than Optimal Gear—Case Study Based on Data Obtained in Real Traffic Conditions," Energies, MDPI, vol. 14(23), pages 1-15, November.
    20. Kyoungho Ahn & Hesham A. Rakha, 2022. "Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications," Energies, MDPI, vol. 15(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2433-:d:357232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.