IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp267-276.html
   My bibliography  Save this article

Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion

Author

Listed:
  • Pan, Shu-Yuan
  • Chiang, Pen-Chi
  • Chen, Yi-Hung
  • Tan, Chung-Sung
  • Chang, E.-E.

Abstract

The reaction kinetics of carbon dioxide (CO2) capture by the accelerated carbonation of basic oxygen furnace slag (BOFS) in a rotating packed bed (RPB) was evaluated using the surface coverage model. Experimental data were utilized to determine the reaction rate constants and maximum carbonation conversion of BOFS based on the surface coverage model. The results indicate that the carbonation of BOFS in an RPB can be well-expressed by the surface coverage model, with R2 values from 0.98 to 0.99. In addition, the results of reaction kinetics could be validated by observation of SEM and XEDS before and after carbonation, which indicates that the reacted BOFS was surrounded by the CaCO3 product. On the other hand, the reaction kinetics of steelmaking slag in an RPB was compared with that in various types of reactors, i.e., autoclave and slurry reactors. The overall rate of carbonation in an RPB (i.e., 0.299min−1) was greater than that in both a slurry reactor (i.e., 0.227min−1) and an autoclave reactor (i.e., 0.033min−1). Furthermore, the maximum carbonation conversion of BOFS was initially determined by the results of the surface coverage model and then confirmed statistically by the response surface methodology (RSM). It was thus concluded that accelerated carbonation of BOFS in the RPB is a viable method due to its faster reaction kinetics under relatively milder reaction conditions. Accelerated carbonation of BOFS in the RPB is a promising process for CO2 capture due to its relatively higher carbonation conversion of BOFS within a shorter reaction time.

Suggested Citation

  • Pan, Shu-Yuan & Chiang, Pen-Chi & Chen, Yi-Hung & Tan, Chung-Sung & Chang, E.-E., 2014. "Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion," Applied Energy, Elsevier, vol. 113(C), pages 267-276.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:267-276
    DOI: 10.1016/j.apenergy.2013.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2013. "A review on carbon dioxide capture and storage technology using coal fly ash," Applied Energy, Elsevier, vol. 106(C), pages 143-151.
    2. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    3. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weifeng & Xu, Yuanlong & Deng, Zhaoxiong & Wang, Qiuhua, 2022. "Experiments on continuous chemical desorption of CO2-rich solutions," Energy, Elsevier, vol. 239(PD).
    2. Pan, Shu-Yuan & Eleazar, Elisa G. & Chang, E-E & Lin, Yi-Pin & Kim, Hyunook & Chiang, Pen-Chi, 2015. "Systematic approach to determination of optimum gas-phase mass transfer rate for high-gravity carbonation process of steelmaking slags in a rotating packed bed," Applied Energy, Elsevier, vol. 148(C), pages 23-31.
    3. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    4. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    5. Ming-Sheng Ko & Tong-Bou Chang & Cho-Yu Lee & Jhong-Wei Huang & Chin-Fong Lim, 2021. "Optimization of Cyclone-Type Rotary Kiln Reactor for Carbonation of BOF Slag," Sustainability, MDPI, vol. 13(20), pages 1-11, October.
    6. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    7. Lu, Jingwen & Wang, Zhonghui & Su, Sheng & Liu, Hao & Ma, Zhiwei & Ren, Qiangqiang & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2024. "Single-step integrated CO2 absorption and mineralization using fly ash coupled mixed amine solution: Mineralization performance and reaction kinetics," Energy, Elsevier, vol. 286(C).
    8. Zhang, Huining & Gao, Chong & Chen, Ben & Tang, Jiang & He, Dongfeng & Xu, Anjun, 2018. "Stainless steel tailings accelerated direct carbonation process at low pressure: Carbonation efficiency evaluation and chromium leaching inhibition correlation analysis," Energy, Elsevier, vol. 155(C), pages 772-781.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    2. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    3. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    4. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    5. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    6. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    8. Galvez-Martos, J.L. & Morrison, J. & Jauffret, G. & Elsarrag, E. & AlHorr, Y. & Imbabi, M.S. & Glasser, F.P., 2016. "Environmental assessment of aqueous alkaline absorption of carbon dioxide and its use to produce a construction material," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 129-141.
    9. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
    10. Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.
    11. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    12. Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
    13. Dongdong Fang & Lihui Zhang & Linjiang Zou & Feng Duan, 2021. "Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 924-938, October.
    14. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    15. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    16. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    17. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    18. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    19. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    20. Sebayang, Abdi Hanra & Ideris, Fazril & Silitonga, Arridina Susan & Shamsuddin, A.H. & Zamri, M.F.M.A. & Pulungan, Muhammad Anhar & Siahaan, Sihar & Alfansury, Munawar & Kusumo, F. & Milano, Jassinnee, 2023. "Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; A potential Oleaginous tropical seed oil for biodiesel production," Renewable Energy, Elsevier, vol. 211(C), pages 434-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:267-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.