IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v168y2016icp303-313.html
   My bibliography  Save this article

Performance testing of a spectral beam splitting hybrid PVT solar receiver for linear concentrators

Author

Listed:
  • Stanley, Cameron
  • Mojiri, Ahmad
  • Rahat, Mirza
  • Blakers, Andrew
  • Rosengarten, Gary

Abstract

A novel spectral beam splitting photovoltaic/thermal (PVT) solar receiver for linear concentrators has been developed capable of generating high-grade thermal energy concurrently with electricity. This paper evaluates the initial field testing of this receiver which combines a selective absorption heat transfer fluid (Propylene Glycol) with a band pass optical filter to achieve efficient spectral splitting. Wavelengths of light between 700nm and 1100nm are directed to the silicon PV cells, with the remaining wavelengths absorbed directly as heat. A prototype has been constructed and mounted to a parabolic trough concentrator with 42× geometrical concentration ratio. Results demonstrated considerable promise for this technique. High grade heat thermal efficiencies of 31% relative to the thermal beam splitting fraction were achieved at a receiver temperature of 120°C, with a total system efficiency of 50%. Electrical yields of approximately 3.8% relative to the total incident power were measured. While lower than expected we expect with minor modifications system efficiencies beyond 75% will be achievable.

Suggested Citation

  • Stanley, Cameron & Mojiri, Ahmad & Rahat, Mirza & Blakers, Andrew & Rosengarten, Gary, 2016. "Performance testing of a spectral beam splitting hybrid PVT solar receiver for linear concentrators," Applied Energy, Elsevier, vol. 168(C), pages 303-313.
  • Handle: RePEc:eee:appene:v:168:y:2016:i:c:p:303-313
    DOI: 10.1016/j.apenergy.2016.01.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916301003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shou, Chunhui & Luo, Zhongyang & Wang, Tao & Shen, Weidong & Rosengarten, Gary & Wei, Wei & Wang, Cheng & Ni, Mingjiang & Cen, Kefa, 2012. "Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems," Applied Energy, Elsevier, vol. 92(C), pages 298-306.
    2. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    3. Crisostomo, Felipe & Taylor, Robert A. & Zhang, Tian & Perez-Wurfl, Ivan & Rosengarten, Gary & Everett, Vernie & Hawkes, Evatt R., 2014. "Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector," Renewable Energy, Elsevier, vol. 72(C), pages 79-87.
    4. Crisostomo, Felipe & Taylor, Robert A. & Surjadi, Desiree & Mojiri, Ahmad & Rosengarten, Gary & Hawkes, Evatt R., 2015. "Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector," Applied Energy, Elsevier, vol. 141(C), pages 238-246.
    5. An, Wei & Zhang, Jie & Zhu, Tong & Gao, Naiping, 2016. "Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test," Renewable Energy, Elsevier, vol. 86(C), pages 633-642.
    6. Looser, R. & Vivar, M. & Everett, V., 2014. "Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications," Applied Energy, Elsevier, vol. 113(C), pages 1496-1511.
    7. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    8. Hamdy, M. A. & Luttmann, F. & Osborn, D., 1988. "Model of a spectrally selective decoupled photovoltaic/thermal concentrating system," Applied Energy, Elsevier, vol. 30(3), pages 209-225.
    9. Marius Peters & Jan Christoph Goldschmidt & Philipp Löper & Bernhard Groß & Johannes Üpping & Frank Dimroth & Ralf B. Wehrspohn & Benedikt Bläsi, 2010. "Spectrally-Selective Photonic Structures for PV Applications," Energies, MDPI, vol. 3(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Li & Xiaoyu Xu & Daorina Bao & Bakhramzhan Rasakhodzhaev & Akhadov Jobir & Chun Chang & Mingzhi Zhao, 2023. "Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer," Energies, MDPI, vol. 16(24), pages 1-27, December.
    2. Alois Resch & Robert Höller, 2023. "State-of-the-Art of Concentrating Photovoltaic Thermal Technology," Energies, MDPI, vol. 16(9), pages 1-13, April.
    3. Zhang, Gaoming & Wei, Jinjia & Wang, Zexin & Xie, Huling & Xi, Yonghao & Khalid, Muhammad, 2019. "Investigation into effects of non-uniform irradiance and photovoltaic temperature on performances of photovoltaic/thermal systems coupled with truncated compound parabolic concentrators," Applied Energy, Elsevier, vol. 250(C), pages 245-256.
    4. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
    5. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    6. Alois Resch & Robert Höller, 2023. "Optical Modelling of a Linear Fresnel Concentrator for the Development of a Spectral Splitting Concentrating Photovoltaic Thermal Receiver," Energies, MDPI, vol. 16(14), pages 1-20, July.
    7. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    8. Ben Amara, Mahmoud & Rdhaounia, Elhem & Balghouthi, Moncef, 2024. "Experimental study of a concentrating solar spectrum splitting system for hybrid solar energy conversion," Renewable Energy, Elsevier, vol. 221(C).
    9. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Kirk, Alexander & Osowski, Mark & Cygan, David & Abbasi, Hamid, 2019. "Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C," Applied Energy, Elsevier, vol. 239(C), pages 514-525.
    10. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Kasaeian, Alibakhsh & Tabasi, Sanaz & Ghaderian, Javad & Yousefi, Hossein, 2018. "A review on parabolic trough/Fresnel based photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 193-204.
    12. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.
    13. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    14. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    15. Felsberger, Richard & Buchroithner, Armin & Gerl, Bernhard & Schweighofer, Bernhard & Wegleiter, Hannes, 2021. "Design and testing of concentrated photovoltaic arrays for retrofitting of solar thermal parabolic trough collectors," Applied Energy, Elsevier, vol. 300(C).
    16. Bicer, Yusuf & Sprotte, André Felipe Vitorio & Dincer, Ibrahim, 2017. "Concentrated solar light splitting using cold mirrors for photovoltaics and photonic hydrogen production applications," Applied Energy, Elsevier, vol. 197(C), pages 169-182.
    17. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    18. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    19. Zhang, J.J. & Qu, Z.G. & Zhang, J.F., 2022. "MCRT-FDTD investigation of the solar-plasmonic-electrical conversion for uniform irradiation in a spectral splitting CPVT system," Applied Energy, Elsevier, vol. 315(C).
    20. Benjamín Chavarría-Domínguez & Susana Estefany De León-Aldaco & Nicolás Velázquez-Limón & Mario Ponce-Silva & Jesús Armando Aguilar-Jiménez & Fernando Chavarría-Domínguez, 2024. "A Review of the Modeling of Parabolic Trough Solar Collectors Coupled to Solar Receivers with Photovoltaic/Thermal Generation," Energies, MDPI, vol. 17(7), pages 1-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2018. "Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation," Applied Energy, Elsevier, vol. 209(C), pages 236-250.
    2. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    3. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    4. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Kandilli, Canan & Külahlı, Gürhan, 2017. "Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 101(C), pages 713-727.
    6. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    8. Crisostomo, Felipe & Hjerrild, Natasha & Mesgari, Sara & Li, Qiyuan & Taylor, Robert A., 2017. "A hybrid PV/T collector using spectrally selective absorbing nanofluids," Applied Energy, Elsevier, vol. 193(C), pages 1-14.
    9. Huaxu, Liang & Fuqiang, Wang & Dong, Zhang & Ziming, Cheng & Chuanxin, Zhang & Bo, Lin & Huijin, Xu, 2020. "Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system," Energy, Elsevier, vol. 194(C).
    10. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    11. Han, Xinyue & Xue, Dengshuai & Zheng, Jun & Alelyani, Sami M. & Chen, Xiaobin, 2019. "Spectral characterization of spectrally selective liquid absorption filters and exploring their effects on concentrator solar cells," Renewable Energy, Elsevier, vol. 131(C), pages 938-945.
    12. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    13. An, Wei & Zhang, Jie & Zhu, Tong & Gao, Naiping, 2016. "Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test," Renewable Energy, Elsevier, vol. 86(C), pages 633-642.
    14. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
    15. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    16. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    17. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    18. Otanicar, Todd P. & Theisen, Stephen & Norman, Tyler & Tyagi, Himanshu & Taylor, Robert A., 2015. "Envisioning advanced solar electricity generation: Parametric studies of CPV/T systems with spectral filtering and high temperature PV," Applied Energy, Elsevier, vol. 140(C), pages 224-233.
    19. Si Kuan Thio & Sung-Yong Park, 2019. "Dispersive Optical Systems for Highly-Concentrated Solar Spectrum Splitting: Concept, Design, and Performance Analyses," Energies, MDPI, vol. 12(24), pages 1-18, December.
    20. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:168:y:2016:i:c:p:303-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.