IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp202-213.html
   My bibliography  Save this article

The impact of location and type on the performance of low-voltage network connected battery energy storage systems

Author

Listed:
  • Yunusov, Timur
  • Frame, Damien
  • Holderbaum, William
  • Potter, Ben

Abstract

This paper assesses the impact of the location and configuration of Battery Energy Storage Systems (BESS) on Low-Voltage (LV) feeders. BESS are now being deployed on LV networks by Distribution Network Operators (DNOs) as an alternative to conventional reinforcement (e.g. upgrading cables and transformers) in response to increased electricity demand from new technologies such as electric vehicles. By storing energy during periods of low demand and then releasing that energy at times of high demand, the peak demand of a given LV substation on the grid can be reduced therefore mitigating or at least delaying the need for replacement and upgrade. However, existing research into this application of BESS tends to evaluate the aggregated impact of such systems at the substation level and does not systematically consider the impact of the location and configuration of BESS on the voltage profiles, losses and utilisation within a given feeder.

Suggested Citation

  • Yunusov, Timur & Frame, Damien & Holderbaum, William & Potter, Ben, 2016. "The impact of location and type on the performance of low-voltage network connected battery energy storage systems," Applied Energy, Elsevier, vol. 165(C), pages 202-213.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:202-213
    DOI: 10.1016/j.apenergy.2015.12.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016189
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reza Arghandeh & Jeremy Woyak & Ahmet Onen & Jaesung Jung & Robert P. Broadwater, 2014. "Economic Optimal Operation of Community Energy Storage Systems in Competitive Energy Markets," Papers 1407.0433, arXiv.org, revised Sep 2014.
    2. Bennett, Christopher J. & Stewart, Rodney A. & Lu, Jun Wei, 2015. "Development of a three-phase battery energy storage scheduling and operation system for low voltage distribution networks," Applied Energy, Elsevier, vol. 146(C), pages 122-134.
    3. Matthew Rowe & Timur Yunusov & Stephen Haben & William Holderbaum & Ben Potter, 2014. "The Real-Time Optimisation of DNO Owned Storage Devices on the LV Network for Peak Reduction," Energies, MDPI, vol. 7(6), pages 1-24, May.
    4. Arghandeh, Reza & Woyak, Jeremy & Onen, Ahmet & Jung, Jaesung & Broadwater, Robert P., 2014. "Economic optimal operation of Community Energy Storage systems in competitive energy markets," Applied Energy, Elsevier, vol. 135(C), pages 71-80.
    5. Poghosyan, Anush & Greetham, Danica Vukadinović & Haben, Stephen & Lee, Tamsin, 2015. "Long term individual load forecast under different electrical vehicles uptake scenarios," Applied Energy, Elsevier, vol. 157(C), pages 699-709.
    6. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Mazza & Hamidreza Mirtaheri & Gianfranco Chicco & Angela Russo & Maurizio Fantino, 2019. "Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-20, December.
    2. Meysam Shamshiri & Chin Kim Gan & Junainah Sardi & Mau Teng Au & Wei Hown Tee, 2020. "Design of Battery Storage System for Malaysia Low Voltage Distribution Network with the Presence of Residential Solar Photovoltaic System," Energies, MDPI, vol. 13(18), pages 1-20, September.
    3. Carpinelli, G. & Mottola, F. & Proto, D. & Varilone, P., 2017. "Minimizing unbalances in low-voltage microgrids: Optimal scheduling of distributed resources," Applied Energy, Elsevier, vol. 191(C), pages 170-182.
    4. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    5. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    6. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    7. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Andrew F. Crossland & Darren Jones & Neal S. Wade & Sara L. Walker, 2018. "Comparison of the Location and Rating of Energy Storage for Renewables Integration in Residential Low Voltage Networks with Overvoltage Constraints," Energies, MDPI, vol. 11(8), pages 1-16, August.
    9. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    10. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    11. Yaghoobi, Jalil & Islam, Monirul & Mithulananthan, Nadarajah, 2018. "Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units," Applied Energy, Elsevier, vol. 211(C), pages 358-367.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bennett, Christopher J. & Stewart, Rodney A. & Lu, Jun Wei, 2015. "Development of a three-phase battery energy storage scheduling and operation system for low voltage distribution networks," Applied Energy, Elsevier, vol. 146(C), pages 122-134.
    2. Li, Zhengshuo & Guo, Qinglai & Sun, Hongbin & Wang, Jianhui, 2015. "Storage-like devices in load leveling: Complementarity constraints and a new and exact relaxation method," Applied Energy, Elsevier, vol. 151(C), pages 13-22.
    3. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    4. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    5. Hau, Lee Cheun & Lim, Yun Seng & Liew, Serena Miao San, 2020. "A novel spontaneous self-adjusting controller of energy storage system for maximum demand reductions under penetration of photovoltaic system," Applied Energy, Elsevier, vol. 260(C).
    6. Hyun Cheol Jeong & Jaesung Jung & Byung O Kang, 2020. "Development of Operational Strategies of Energy Storage System Using Classification of Customer Load Profiles under Time-of-Use Tariffs in South Korea," Energies, MDPI, vol. 13(7), pages 1-17, April.
    7. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    8. Abdullah M. Alabdullatif & Enrico H. Gerding & Alvaro Perez-Diaz, 2020. "Market Design and Trading Strategies for Community Energy Markets with Storage and Renewable Supply," Energies, MDPI, vol. 13(4), pages 1-31, February.
    9. Wyman-Pain, Heather & Bian, Yuankai & Thomas, Cain & Li, Furong, 2018. "The economics of different generation technologies for frequency response provision," Applied Energy, Elsevier, vol. 222(C), pages 554-563.
    10. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    11. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    12. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    13. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    14. Zhang, Chunyu & Wang, Qi & Wang, Jianhui & Korpås, Magnus & Pinson, Pierre & Østergaard, Jacob & Khodayar, Mohammad E., 2016. "Trading strategies for distribution company with stochastic distributed energy resources," Applied Energy, Elsevier, vol. 177(C), pages 625-635.
    15. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    16. Francesc Girbau-LListuella & Francisco Díaz-González & Andreas Sumper, 2017. "Optimization of the Operation of Smart Rural Grids through a Novel Energy Management System," Energies, MDPI, vol. 11(1), pages 1-28, December.
    17. Kim, Insu, 2018. "Optimal capacity of storage systems and photovoltaic systems able to control reactive power using the sensitivity analysis method," Energy, Elsevier, vol. 150(C), pages 642-652.
    18. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    19. Gährs, Swantje & Knoefel, Jan, 2020. "Stakeholder demands and regulatory framework for community energy storage with a focus on Germany," Energy Policy, Elsevier, vol. 144(C).
    20. Sturmberg, B.C.P. & Shaw, M.E. & Mediwaththe, C.P. & Ransan-Cooper, H. & Weise, B. & Thomas, M. & Blackhall, L., 2021. "A mutually beneficial approach to electricity network pricing in the presence of large amounts of solar power and community-scale energy storage," Energy Policy, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:202-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.