Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.10.153
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wei, Xiupeng & Kusiak, Andrew & Li, Mingyang & Tang, Fan & Zeng, Yaohui, 2015. "Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance," Energy, Elsevier, vol. 83(C), pages 294-306.
- Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
- Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
- Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
- Kusiak, Andrew & Xu, Guanglin, 2012. "Modeling and optimization of HVAC systems using a dynamic neural network," Energy, Elsevier, vol. 42(1), pages 241-250.
- Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
- Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
- Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
- Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
- Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
- Kristl, Živa & Košir, Mitja & Trobec Lah, Mateja & Krainer, Aleš, 2008. "Fuzzy control system for thermal and visual comfort in building," Renewable Energy, Elsevier, vol. 33(4), pages 694-702.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wangqi Xiong & Jiandong Wang, 2020. "Minimizing Power Consumption of an Experimental HVAC System Based on Parallel Grid Searching," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Bustamante, Waldo & Uribe, Daniel & Vera, Sergio & Molina, Germán, 2017. "An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings," Applied Energy, Elsevier, vol. 198(C), pages 36-48.
- Qin, Haosen & Yu, Zhen & Li, Tailu & Liu, Xueliang & Li, Li, 2023. "Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning," Energy, Elsevier, vol. 264(C).
- Alibabaei, Nima & Fung, Alan S. & Raahemifar, Kaamran & Moghimi, Arash, 2017. "Effects of intelligent strategy planning models on residential HVAC system energy demand and cost during the heating and cooling seasons," Applied Energy, Elsevier, vol. 185(P1), pages 29-43.
- Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
- Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
- Nishant Raj Kapoor & Ashok Kumar & Tabish Alam & Anuj Kumar & Kishor S. Kulkarni & Paolo Blecich, 2021. "A Review on Indoor Environment Quality of Indian School Classrooms," Sustainability, MDPI, vol. 13(21), pages 1-43, October.
- Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
- Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
- Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
- Jazizadeh, Farrokh & Jung, Wooyoung, 2018. "Personalized thermal comfort inference using RGB video images for distributed HVAC control," Applied Energy, Elsevier, vol. 220(C), pages 829-841.
- Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
- Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
- Lei, Yunkai & Hou, Kai & Wang, Yue & Jia, Hongjie & Zhang, Pei & Mu, Yunfei & Jin, Xiaolong & Sui, Bingyan, 2018. "A new reliability assessment approach for integrated energy systems: Using hierarchical decoupling optimization framework and impact-increment based state enumeration method," Applied Energy, Elsevier, vol. 210(C), pages 1237-1250.
- Antonio Del Corte-Valiente & José Luis Castillo-Sequera & Ana Castillo-Martinez & José Manuel Gómez-Pulido & Jose-Maria Gutierrez-Martinez, 2017. "An Artificial Neural Network for Analyzing Overall Uniformity in Outdoor Lighting Systems," Energies, MDPI, vol. 10(2), pages 1-18, February.
- Hou, D. & Evins, R., 2024. "A protocol for developing and evaluating neural network-based surrogate models and its application to building energy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
- Orosz, Matthew & Altes-Buch, Queralt & Mueller, Amy & Lemort, Vincent, 2018. "Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa," Applied Energy, Elsevier, vol. 218(C), pages 382-390.
- Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
- Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
- Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
- Haosen Qin & Zhen Yu & Tailu Li & Xueliang Liu & Li Li, 2022. "Heating Control Strategy Based on Dynamic Programming for Building Energy Saving and Emission Reduction," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
- Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
- Panagiotis Michailidis & Iakovos Michailidis & Socratis Gkelios & Elias Kosmatopoulos, 2024. "Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions," Energies, MDPI, vol. 17(3), pages 1-47, January.
- Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
- Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
- Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
- Guiqiang Wang & Haiman Wang & Zhiqiang Kang & Guohui Feng, 2020. "Data-Driven Optimization for Capacity Control of Multiple Ground Source Heat Pump System in Heating Mode," Energies, MDPI, vol. 13(14), pages 1-15, July.
- Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
- Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
- Deng, Zhipeng & Wang, Xuezheng & Dong, Bing, 2023. "Quantum computing for future real-time building HVAC controls," Applied Energy, Elsevier, vol. 334(C).
- Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
- Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Zhao, Lei, 2015. "Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm," Energy, Elsevier, vol. 82(C), pages 939-948.
- Zhao, Lei & Cai, Wenjian & Ding, Xudong & Chang, Weichung, 2013. "Model-based optimization for vapor compression refrigeration cycle," Energy, Elsevier, vol. 55(C), pages 392-402.
- Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
- Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
- Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
- Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
- Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
- Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
- Iivo Metsä-Eerola & Jukka Pulkkinen & Olli Niemitalo & Olli Koskela, 2022. "On Hourly Forecasting Heating Energy Consumption of HVAC with Recurrent Neural Networks," Energies, MDPI, vol. 15(14), pages 1-20, July.
- Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
- Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
More about this item
Keywords
Integrated energy system modelling; Daylighting; Genetic algorithm (GA); Artificial neural network (ANN); Design of experiments (DOE); Energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:666-674. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.