IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1597-d111273.html
   My bibliography  Save this article

Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization

Author

Listed:
  • Shunling Ruan

    (College of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Haiyan Xie

    (Department of Technology, Illinois State University, Normal, IL 61790-5100, USA)

  • Song Jiang

    (College of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China)

Abstract

Sustainable facilities management (SFM) opens the door of opportunity for companies to evaluate the quality of resources and environment management at their facilities. It enables the principles of sustainable development. There is still inefficiency in quantitative research of integrating environmental factors, particularly multi-source data, to monitor and control complicated systems in buildings. The objective of this research is to develop an effective method to dynamically optimize energy efficiency in SFM plans and strategies. The research question is: can the integrated proactive method reduce energy consumption with dynamically adjustable controls? This paper proposes a coordinated proactive control method using dynamic time-series prediction (PCM-DTSP) for SFM, which optimizes system controls by integrating the prediction results and monitored environmental-data. The results show that, after optimization, the temperature fluctuations are reduced to 33.3%. The average temperature and maximum temperature are reduced by 8% and 13.1%, respectively. The instantaneous power consumption was reduced by 0.17 KW per hour for each cooling system unit. The PCM-DTSP method can significantly optimize energy efficiency, which paves the way for long-term comprehensive energy management. The contribution of the research lies in its optimized control of energy consumption, temperature stabilization, and improvement of environmental comfort solutions, which can be generalized to various types of buildings.

Suggested Citation

  • Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1597-:d:111273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    2. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    3. Durand-Estebe, Baptiste & Le Bot, Cédric & Mancos, Jean Nicolas & Arquis, Eric, 2014. "Simulation of a temperature adaptive control strategy for an IWSE economizer in a data center," Applied Energy, Elsevier, vol. 134(C), pages 45-56.
    4. Gann, David M. & Salter, Ammon J., 2000. "Innovation in project-based, service-enhanced firms: the construction of complex products and systems," Research Policy, Elsevier, vol. 29(7-8), pages 955-972, August.
    5. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    6. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    7. Giuseppe Ioppolo & Stefano Cucurachi & Roberta Salomone & Giuseppe Saija & Lei Shi, 2016. "Sustainable Local Development and Environmental Governance: A Strategic Planning Experience," Sustainability, MDPI, vol. 8(2), pages 1-16, February.
    8. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corsini, Filippo & Appio, Francesco Paolo & Frey, Marco, 2019. "Exploring the antecedents and consequences of environmental performance in micro-enterprises: The case of the Italian craft beer industry," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 340-350.
    2. Aladayleh Khaled Jameel & Qudah Shatha Mustafa Abdallah Al & Bargues José Luis Fuentes & Gisbert Pablo Ferrer, 2023. "Global trends of the research on COVID-19 risks effect in sustainable facility management fields: a bibliometric analysis," Engineering Management in Production and Services, Sciendo, vol. 15(1), pages 12-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    5. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    6. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    7. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    8. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    9. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    10. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    11. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    13. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    14. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    15. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    16. Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
    17. Francesca Marcello & Virginia Pilloni & Daniele Giusto, 2019. "Sensor-Based Early Activity Recognition Inside Buildings to Support Energy and Comfort Management Systems," Energies, MDPI, vol. 12(13), pages 1-18, July.
    18. Buonomano, Annamaria & Montanaro, Umberto & Palombo, Adolfo & Santini, Stefania, 2016. "Dynamic building energy performance analysis: A new adaptive control strategy for stringent thermohygrometric indoor air requirements," Applied Energy, Elsevier, vol. 163(C), pages 361-386.
    19. Labeodan, Timilehin & Aduda, Kennedy & Boxem, Gert & Zeiler, Wim, 2015. "On the application of multi-agent systems in buildings for improved building operations, performance and smart grid interaction – A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1405-1414.
    20. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1597-:d:111273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.