IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1571-1578.html
   My bibliography  Save this article

Customer satisfaction based reliability evaluation of active distribution networks

Author

Listed:
  • Li, Gengfeng
  • Bie, Zhaohong
  • Xie, Haipeng
  • Lin, Yanling

Abstract

Reliability evaluation of active distribution networks (ADNs) considering customer satisfaction is studied in this paper. Operation optimization model of ADNs is established, which aims to maximize the operation benefit of ADNs using demand response. However, according to optimization decisions, customers may have to change their electricity consumption habit, which affects customer satisfaction and the reliability of customers and ADNs. Two customer satisfaction indices are defined therefore as constraints in the operation optimization to quantify these effects. By a Sequential Monte Carlo (SMC) simulation, the optimization processes is innovatively integrated into the reliability evaluation, and thus the impacts of customer satisfaction constraints are incorporated in reliability evaluation. Further, four new reliability indices are defined in this paper to visibly reflect their impacts. The presented models and methods are validated by extensive studies conducted on a standard test system. Evaluation results accurately quantify the impacts of customer satisfaction constraints on load profiles, reliability and economic performance of ADNs. Conclusions drawn from evaluation results can provide helpful insights for distribution system operators (DSOs) to effectively improve the reliability and operation economy of ADNs using demand resources.

Suggested Citation

  • Li, Gengfeng & Bie, Zhaohong & Xie, Haipeng & Lin, Yanling, 2016. "Customer satisfaction based reliability evaluation of active distribution networks," Applied Energy, Elsevier, vol. 162(C), pages 1571-1578.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1571-1578
    DOI: 10.1016/j.apenergy.2015.02.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    2. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    3. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.
    4. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    5. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    6. Apergis, Nicholas & Payne, James E., 2011. "Renewable and non-renewable electricity consumption–growth nexus: Evidence from emerging market economies," Applied Energy, Elsevier, vol. 88(12), pages 5226-5230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    2. Yang, Shuxia & Wang, Xiongfei & Xu, Jiayu & Tang, Mingrun & Chen, Guang, 2023. "Distribution network adaptability assessment considering distributed PV “reverse power flow” behavior - a case study in Beijing," Energy, Elsevier, vol. 275(C).
    3. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    4. Cheng, Lin & Wan, Yuxiang & Tian, Liting & Zhang, Fang, 2019. "Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Zeng, Bo & Wu, Geng & Wang, Jianhui & Zhang, Jianhua & Zeng, Ming, 2017. "Impact of behavior-driven demand response on supply adequacy in smart distribution systems," Applied Energy, Elsevier, vol. 202(C), pages 125-137.
    6. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    7. Dominika Siwiec & Andrzej Pacana, 2024. "Decision-Making Model Supporting Eco-Innovation in Energy Production Based on Quality, Cost and Life Cycle Assessment (LCA)," Energies, MDPI, vol. 17(17), pages 1-26, August.
    8. Zeng, Bo & Zhao, Dongbo & Singh, Chanan & Wang, Jianhui & Chen, Chen, 2019. "Holistic modeling framework of demand response considering multi-timescale uncertainties for capacity value estimation," Applied Energy, Elsevier, vol. 247(C), pages 692-702.
    9. Xiao Han & Ming Zhou & Gengyin Li & Kwang Y. Lee, 2017. "Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium," Energies, MDPI, vol. 10(12), pages 1-17, December.
    10. Zeng, Bo & Wei, Xuan & Zhao, Dongbo & Singh, Chanan & Zhang, Jianhua, 2018. "Hybrid probabilistic-possibilistic approach for capacity credit evaluation of demand response considering both exogenous and endogenous uncertainties," Applied Energy, Elsevier, vol. 229(C), pages 186-200.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    2. Mahboubi-Moghaddam, Esmaeil & Nayeripour, Majid & Aghaei, Jamshid, 2016. "Reliability constrained decision model for energy service provider incorporating demand response programs," Applied Energy, Elsevier, vol. 183(C), pages 552-565.
    3. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    4. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
    5. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    6. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    7. Ranjan Aneja & Umer J. Banday & Tanzeem Hasnat & Mustafa Koçoglu, 2017. "Renewable and Non-renewable Energy Consumption and Economic Growth: Empirical Evidence from Panel Error Correction Model," Jindal Journal of Business Research, , vol. 6(1), pages 76-85, June.
    8. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    9. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M., 2014. "Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 290-298.
    10. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    11. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    12. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    13. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2013. "The causal relationship between energy resources and economic growth in Brazil," Energy Policy, Elsevier, vol. 61(C), pages 793-801.
    14. Gorkemli Kazar & Arthur Kazar, 2014. "The Renewable Energy Production-Economic Development Nexus," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 312-319.
    15. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    16. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    17. Apergis, Nicholas & Chang, Tsangyao & Gupta, Rangan & Ziramba, Emmanuel, 2016. "Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 318-325.
    18. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    19. Gharibpour, Hassan & Aminifar, Farrokh & Rahmati, Iman & Keshavarz, Arezou, 2021. "Dual variable decomposition to discriminate the cost imposed by inflexible units in electricity markets," Applied Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1571-1578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.