IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2003-d121192.html
   My bibliography  Save this article

Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium

Author

Listed:
  • Xiao Han

    (State Key Laboratory of New Energy Power System, North China Electric Power University, Beijing 102206, China)

  • Ming Zhou

    (State Key Laboratory of New Energy Power System, North China Electric Power University, Beijing 102206, China)

  • Gengyin Li

    (State Key Laboratory of New Energy Power System, North China Electric Power University, Beijing 102206, China)

  • Kwang Y. Lee

    (Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798-7356, USA)

Abstract

This paper focuses on the optimal intraday scheduling of a distribution system that includes renewable energy (RE) generation, energy storage systems (ESSs), and thermostatically controlled loads (TCLs). This system also provides time-of-use pricing to customers. Unlike previous studies, this study attempts to examine how to optimize the allocation of electric energy and to improve the equilibrium of the load curve. Accordingly, we propose a concept of load equilibrium entropy to quantify the overall equilibrium of the load curve and reflect the allocation optimization of electric energy. Based on this entropy, we built a novel multi-objective optimal dispatching model to minimize the operational cost and maximize the load curve equilibrium. To aggregate TCLs into the optimization objective, we introduced the concept of a virtual power plant (VPP) and proposed a calculation method for VPP operating characteristics based on the equivalent thermal parameter model and the state-queue control method. The Particle Swarm Optimization algorithm was employed to solve the optimization problems. The simulation results illustrated that the proposed dispatching model can achieve cost reductions of system operations, peak load curtailment, and efficiency improvements, and also verified that the load equilibrium entropy can be used as a novel index of load characteristics.

Suggested Citation

  • Xiao Han & Ming Zhou & Gengyin Li & Kwang Y. Lee, 2017. "Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium," Energies, MDPI, vol. 10(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2003-:d:121192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Chen & Dong Liu & Xiaofang Xiong, 2017. "Research on Stochastic Optimal Operation Strategy of Active Distribution Network Considering Intermittent Energy," Energies, MDPI, vol. 10(4), pages 1-23, April.
    2. Kevin J. Warner & Glenn A. Jones, 2017. "The Climate-Independent Need for Renewable Energy in the 21st Century," Energies, MDPI, vol. 10(8), pages 1-13, August.
    3. Li, Gengfeng & Bie, Zhaohong & Xie, Haipeng & Lin, Yanling, 2016. "Customer satisfaction based reliability evaluation of active distribution networks," Applied Energy, Elsevier, vol. 162(C), pages 1571-1578.
    4. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    5. Sun, Bing & Yu, Yixin & Qin, Chao, 2017. "Should China focus on the distributed development of wind and solar photovoltaic power generation? A comparative study," Applied Energy, Elsevier, vol. 185(P1), pages 421-439.
    6. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    7. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    8. Jaeyong Chae & Sung-Kwan Joo, 2017. "Demand Response Resource Allocation Method Using Mean-Variance Portfolio Theory for Load Aggregators in the Korean Demand Response Market," Energies, MDPI, vol. 10(7), pages 1-14, June.
    9. Xiaoyang Sun & Baosheng Zhang & Xu Tang & Benjamin C. McLellan & Mikael Höök, 2016. "Sustainable Energy Transitions in China: Renewable Options and Impacts on the Electricity System," Energies, MDPI, vol. 9(12), pages 1-20, November.
    10. Jingyu Liu & Lei Zhang, 2016. "Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations," Energies, MDPI, vol. 9(12), pages 1-17, November.
    11. Pengwei Cong & Wei Tang & Lu Zhang & Bo Zhang & Yongxiang Cai, 2017. "Day-Ahead Active Power Scheduling in Active Distribution Network Considering Renewable Energy Generation Forecast Errors," Energies, MDPI, vol. 10(9), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    2. Yu Zhang & Xiaohui Song & Yong Li & Zilong Zeng & Chenchen Yong & Denis Sidorov & Xia Lv, 2020. "Two-Stage Active and Reactive Power Coordinated Optimal Dispatch for Active Distribution Network Considering Load Flexibility," Energies, MDPI, vol. 13(22), pages 1-13, November.
    3. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    4. Yu Shi & Fei Lv & Xuefeng Gao & Minglei Jiang & Huan Luo & Ruhang Xu, 2023. "A Bi-Level Optimal Operation Model for Small-Scale Active Distribution Networks Considering the Coupling Fluctuation of Spot Electricity Prices and Renewable Energy Sources," Energies, MDPI, vol. 16(11), pages 1-26, June.
    5. Mazidi, Mohammadreza & Monsef, Hassan & Siano, Pierluigi, 2016. "Robust day-ahead scheduling of smart distribution networks considering demand response programs," Applied Energy, Elsevier, vol. 178(C), pages 929-942.
    6. Jun Dong & Huijuan Huo & Dongran Liu & Rong Li, 2017. "Evaluating the Comprehensive Performance of Demand Response for Commercial Customers by Applying Combination Weighting Techniques and Fuzzy VIKOR Approach," Sustainability, MDPI, vol. 9(8), pages 1-32, July.
    7. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    10. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    11. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    12. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    13. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    14. Hao Cai & Ling Liang & Jing Tang & Qianxian Wang & Lihong Wei & Jiaping Xie, 2019. "An Empirical Study on the Efficiency and Influencing Factors of the Photovoltaic Industry in China and an Analysis of Its Influencing Factors," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    15. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    16. Manish Mohanpurkar & Yusheng Luo & Danny Terlip & Fernando Dias & Kevin Harrison & Joshua Eichman & Rob Hovsapian & Jennifer Kurtz, 2017. "Electrolyzers Enhancing Flexibility in Electric Grids," Energies, MDPI, vol. 10(11), pages 1-17, November.
    17. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    18. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    19. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    20. Kalyani Makarand Kurundkar & Geetanjali Abhijit Vaidya, 2023. "Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty," Energies, MDPI, vol. 16(6), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2003-:d:121192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.