IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v202y2017icp125-137.html
   My bibliography  Save this article

Impact of behavior-driven demand response on supply adequacy in smart distribution systems

Author

Listed:
  • Zeng, Bo
  • Wu, Geng
  • Wang, Jianhui
  • Zhang, Jianhua
  • Zeng, Ming

Abstract

As an integral feature of a future smart grid, demand response (DR) provides utility companies an emerging alternative to boost the reliability performance (e.g., supply adequacy) of power systems. Unlike for physical devices, the availability of DR is not only dependent on the operations of electric appliances on the demand side but can be affected by customers’ behaviors. Thus, how or to what extent DR actions can affect power system reliability becomes an important issue for utilities. In this paper, a new approach for assessing the contribution of incentive-based DR to the supply adequacy of smart distribution systems (SDS) is presented. Compared with existing methods, our method explicitly captures the varying availability of customer DR capabilities. We introduce a behavior-reinforcement procedure to model the correlation of users’ participation willingness with their historical DR profitability. Then, a strategic DR dispatch strategy can be developed to optimize users’ DR availability bids in the market. In addition, the interdependency between a communication system and DR operation has also been considered. A hybrid algorithm based on sequential Monte-Carlo simulation and an optimal load dispatch method is employed to evaluate the system reliability in this context. The proposed approach is illustrated using both a small-scale test case and a real regional distribution grid in China. The results demonstrate the effectiveness of the presented method.

Suggested Citation

  • Zeng, Bo & Wu, Geng & Wang, Jianhui & Zhang, Jianhua & Zeng, Ming, 2017. "Impact of behavior-driven demand response on supply adequacy in smart distribution systems," Applied Energy, Elsevier, vol. 202(C), pages 125-137.
  • Handle: RePEc:eee:appene:v:202:y:2017:i:c:p:125-137
    DOI: 10.1016/j.apenergy.2017.05.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917306025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    2. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    3. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    4. Kwag, Hyung-Geun & Kim, Jin-O, 2014. "Reliability modeling of demand response considering uncertainty of customer behavior," Applied Energy, Elsevier, vol. 122(C), pages 24-33.
    5. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    6. Li, Gengfeng & Bie, Zhaohong & Xie, Haipeng & Lin, Yanling, 2016. "Customer satisfaction based reliability evaluation of active distribution networks," Applied Energy, Elsevier, vol. 162(C), pages 1571-1578.
    7. Nistor, Silviu & Wu, Jianzhong & Sooriyabandara, Mahesh & Ekanayake, Janaka, 2015. "Capability of smart appliances to provide reserve services," Applied Energy, Elsevier, vol. 138(C), pages 590-597.
    8. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    9. Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viana, Matheus Sabino & Manassero, Giovanni & Udaeta, Miguel E.M., 2018. "Analysis of demand response and photovoltaic distributed generation as resources for power utility planning," Applied Energy, Elsevier, vol. 217(C), pages 456-466.
    2. Zeng, Yuan & Zhang, Ruiwen & Wang, Dong & Mu, Yunfei & Jia, Hongjie, 2019. "A regional power grid operation and planning method considering renewable energy generation and load control," Applied Energy, Elsevier, vol. 237(C), pages 304-313.
    3. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    4. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    5. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    6. Majed A. Alotaibi & Ali M. Eltamaly, 2022. "Upgrading Conventional Power System for Accommodating Electric Vehicle through Demand Side Management and V2G Concepts," Energies, MDPI, vol. 15(18), pages 1-27, September.
    7. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    8. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    9. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    10. Zeng, Bo & Zhao, Dongbo & Singh, Chanan & Wang, Jianhui & Chen, Chen, 2019. "Holistic modeling framework of demand response considering multi-timescale uncertainties for capacity value estimation," Applied Energy, Elsevier, vol. 247(C), pages 692-702.
    11. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    12. Escalera, Alberto & Hayes, Barry & Prodanović, Milan, 2018. "A survey of reliability assessment techniques for modern distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 344-357.
    13. Ponce de Leon Barido, Diego & Suffian, Stephen & Kammen, Daniel M. & Callaway, Duncan, 2018. "Opportunities for behavioral energy efficiency and flexible demand in data-limited low-carbon resource constrained environments," Applied Energy, Elsevier, vol. 228(C), pages 512-523.
    14. Adefarati, T. & Bansal, R.C., 2017. "Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources," Applied Energy, Elsevier, vol. 206(C), pages 911-933.
    15. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    16. Arabzadeh, Vahid & Miettinen, Panu & Kotilainen, Titta & Herranen, Pasi & Karakoc, Alp & Kummu, Matti & Rautkari, Lauri, 2023. "Urban vertical farming with a large wind power share and optimised electricity costs," Applied Energy, Elsevier, vol. 331(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Bo & Wei, Xuan & Zhao, Dongbo & Singh, Chanan & Zhang, Jianhua, 2018. "Hybrid probabilistic-possibilistic approach for capacity credit evaluation of demand response considering both exogenous and endogenous uncertainties," Applied Energy, Elsevier, vol. 229(C), pages 186-200.
    2. Zeng, Bo & Zhao, Dongbo & Singh, Chanan & Wang, Jianhui & Chen, Chen, 2019. "Holistic modeling framework of demand response considering multi-timescale uncertainties for capacity value estimation," Applied Energy, Elsevier, vol. 247(C), pages 692-702.
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    4. Cheng, Lin & Wan, Yuxiang & Tian, Liting & Zhang, Fang, 2019. "Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    6. Michael Kosfeld, 2002. "Stochastic strategy adjustment in coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 321-339.
    7. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    8. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    9. Ehud Lehrer & Eilon Solan, 2007. "Learning to play partially-specified equilibrium," Levine's Working Paper Archive 122247000000001436, David K. Levine.
    10. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Kalai, Ehud & Lehrer, Ehud & Smorodinsky, Rann, 1999. "Calibrated Forecasting and Merging," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 151-169, October.
    12. Timothy Cason & Tridib Sharma, 2007. "Recommended play and correlated equilibria: an experimental study," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 11-27, October.
    13. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    14. Andriy Zapechelnyuk, 2007. "Better-Reply Strategies with Bounded Recall," Levine's Bibliography 321307000000000961, UCLA Department of Economics.
    15. Rene Saran & Roberto Serrano, 2007. "The Evolution of Bidding Behavior in Private-Values Auctions and Double Auctions," Working Papers wp2007_0712, CEMFI.
    16. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    17. Fook Wai Kong & Polyxeni-Margarita Kleniati & Berç Rustem, 2012. "Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 237-261, April.
    18. Fudenberg, Drew & Takahashi, Satoru, 2011. "Heterogeneous beliefs and local information in stochastic fictitious play," Games and Economic Behavior, Elsevier, vol. 71(1), pages 100-120, January.
    19. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers hal-03167446, HAL.
    20. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:202:y:2017:i:c:p:125-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.