IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p125-133.html
   My bibliography  Save this article

Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant

Author

Listed:
  • Chmielniak, Tadeusz
  • Lepszy, Sebastian
  • Wójcik, Katarzyna

Abstract

Chemical absorption is a very effective and nowadays often used method of gas separation in chemical industry. This method is also often taken into account when considering systems of carbon capture from flue gases of coal-fired power plants. This process is very energy-intensive and significantly reduces the performance of the power plant.

Suggested Citation

  • Chmielniak, Tadeusz & Lepszy, Sebastian & Wójcik, Katarzyna, 2012. "Analysis of gas turbine combined heat and power system for carbon capture installation of coal-fired power plant," Energy, Elsevier, vol. 45(1), pages 125-133.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:125-133
    DOI: 10.1016/j.energy.2012.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212003532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pellegrini, G. & Strube, R. & Manfrida, G., 2010. "Comparative study of chemical absorbents in postcombustion CO2 capture," Energy, Elsevier, vol. 35(2), pages 851-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    2. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    3. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    4. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2015. "Studying heat integration options for steam-gas power plants retrofitted with CO2 post-combustion capture," Energy, Elsevier, vol. 85(C), pages 594-608.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    2. Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
    3. Theunissen, Ton & Golombok, Mike & Brouwers, J.J.H. (Bert) & Bansal, Gagan & van Benthum, Rob, 2011. "Liquid CO2 droplet extraction from gases," Energy, Elsevier, vol. 36(5), pages 2961-2967.
    4. Zhang, Minkai & Guo, Yincheng, 2017. "Regeneration energy analysis of NH3-based CO2 capture process integrated with a flow-by capacitive ion separation device," Energy, Elsevier, vol. 125(C), pages 178-185.
    5. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2012. "Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy," Applied Energy, Elsevier, vol. 99(C), pages 32-39.
    7. Mores, Patricia & Scenna, Nicolás & Mussati, Sergio, 2012. "CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process," Energy, Elsevier, vol. 45(1), pages 1042-1058.
    8. Chao, Cong & Deng, Yimin & Dewil, Raf & Baeyens, Jan & Fan, Xianfeng, 2021. "Post-combustion carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Sreenivasulu, B. & Gayatri, D.V. & Sreedhar, I. & Raghavan, K.V., 2015. "A journey into the process and engineering aspects of carbon capture technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1324-1350.
    10. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    11. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    12. Abid Salam Farooqi & Raihan Mahirah Ramli & Serene Sow Mun Lock & Noorhidayah Hussein & Muhammad Zubair Shahid & Ahmad Salam Farooqi, 2022. "Simulation of Natural Gas Treatment for Acid Gas Removal Using the Ternary Blend of MDEA, AEEA, and NMP," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    13. Harkin, Trent & Hoadley, Andrew & Hooper, Barry, 2012. "Using multi-objective optimisation in the design of CO2 capture systems for retrofit to coal power stations," Energy, Elsevier, vol. 41(1), pages 228-235.
    14. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    15. Li, Huiyi & Gao, Jianmin & Du, Qian & Shan, Jingjing & Zhang, Yu & Wu, Shaohua & Wang, Zhijiang, 2021. "Direct CO2electroreduction from NH4HCO3electrolyte to syngas on bromine-modified Ag catalyst," Energy, Elsevier, vol. 216(C).
    16. Reddick, Christopher & Sorin, Mikhail & Sapoundjiev, Hristo & Aidoun, Zine, 2016. "Carbon capture simulation using ejectors for waste heat upgrading," Energy, Elsevier, vol. 100(C), pages 251-261.
    17. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.
    18. Lee, Zhi Hua & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2012. "Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2599-2609.
    19. Delgado, Montserrat Rodriguez & Arean, Carlos Otero, 2011. "Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies," Energy, Elsevier, vol. 36(8), pages 5286-5291.
    20. Pfaff, I. & Oexmann, J. & Kather, A., 2010. "Optimised integration of post-combustion CO2 capture process in greenfield power plants," Energy, Elsevier, vol. 35(10), pages 4030-4041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:125-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.