IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222024276.html
   My bibliography  Save this article

An authority-enterprise equilibrium differentiated subsidy mechanism for promoting coalbed methane extraction in multiple coal seams

Author

Listed:
  • Fan, Lurong
  • Wang, Binyu
  • Song, Xiaoling

Abstract

Because of strict technical requirements and high operational costs, exploiting deep coal seam resources is generally uneconomic under traditional uniform subsidy policies, which has resulted in an inadequate extraction of coalbed methane (CBM) and many safety risks or potential emission problems. To deal with these problems, an authority-enterprise equilibrium differentiated subsidy mechanism is proposed to promote CBM extraction in multiple coal seams. Specifically, the differentiated subsidy mechanism ensures that deep resources get more unit subsidies than shallow resources. A bi-level multi-objective optimization model is developed to resolve the interactive relationships between the authority and CBM enterprises, which also seeks a comprehensive balance between increased energy extraction and fiscal expenditure. A case application indicates that implementing differentiated subsidies could effectively promote multiple coal seam CBM extraction. The further discussion showed that a low energy output target and a moderate subsidy can accelerate deep coal seam extraction. Our proposed differentiated subsidy mechanism can be applied to the CBM industry in regions that own abundant deep coal seam resources. Our confirmed appropriate subsidy policy can be used as a reference for the government to promote energy extraction in multiple coal seams.

Suggested Citation

  • Fan, Lurong & Wang, Binyu & Song, Xiaoling, 2023. "An authority-enterprise equilibrium differentiated subsidy mechanism for promoting coalbed methane extraction in multiple coal seams," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024276
    DOI: 10.1016/j.energy.2022.125541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    2. Wu, Junjian & Wang, Haiyan & Shang, Jennifer, 2019. "Multi-sourcing and information sharing under competition and supply uncertainty," European Journal of Operational Research, Elsevier, vol. 278(2), pages 658-671.
    3. Nagy, Roel L.G. & Hagspiel, Verena & Kort, Peter M., 2021. "Green capacity investment under subsidy withdrawal risk," Energy Economics, Elsevier, vol. 98(C).
    4. David Hagmann & Emily H Ho & George Loewenstein, 2019. "Nudging out support for a carbon tax," Nature Climate Change, Nature, vol. 9(6), pages 484-489, June.
    5. Andrée, Bo Pieter Johannes & Diogo, Vasco & Koomen, Eric, 2017. "Efficiency of second-generation biofuel crop subsidy schemes: Spatial heterogeneity and policy design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 848-862.
    6. Hanif D. Sherali & Allen L. Soyster & Frederic H. Murphy, 1983. "Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations," Operations Research, INFORMS, vol. 31(2), pages 253-276, April.
    7. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    8. Newell, Richard G. & Pizer, William A. & Raimi, Daniel, 2019. "U.S. federal government subsidies for clean energy: Design choices and implications," Energy Economics, Elsevier, vol. 80(C), pages 831-841.
    9. Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
    10. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    11. Yanık, Seda & Sürer, Özge & Öztayşi, Başar, 2016. "Designing sustainable energy regions using genetic algorithms and location-allocation approach," Energy, Elsevier, vol. 97(C), pages 161-172.
    12. Hsu, Chiung-Wen, 2012. "Using a system dynamics model to assess the effects of capital subsidies and feed-in tariffs on solar PV installations," Applied Energy, Elsevier, vol. 100(C), pages 205-217.
    13. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    14. Liu, Jianye & Li, Zuxin & Duan, Xuqiang & Luo, Dongkun & Zhao, Xu & Liu, Ruolei, 2021. "Subsidy analysis and development trend forecast of China's unconventional natural gas under the new unconventional gas subsidy policy," Energy Policy, Elsevier, vol. 153(C).
    15. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    16. Nguyen, Thi Anh Tuyet & Chou, Shuo-Yan, 2018. "Impact of government subsidies on economic feasibility of offshore wind system: Implications for Taiwan energy policies," Applied Energy, Elsevier, vol. 217(C), pages 336-345.
    17. Banja, Manjola & Sikkema, Richard & Jégard, Martin & Motola, Vincenzo & Dallemand, Jean-François, 2019. "Biomass for energy in the EU – The support framework," Energy Policy, Elsevier, vol. 131(C), pages 215-228.
    18. Vedenov, Dmitry & Wetzstein, Michael, 2008. "Toward an optimal U.S. ethanol fuel subsidy," Energy Economics, Elsevier, vol. 30(5), pages 2073-2090, September.
    19. Zhang, Huiming & Li, Lianshui & Zhou, Peng & Hou, Jianmin & Qiu, Yueming, 2014. "Subsidy modes, waste cooking oil and biofuel: Policy effectiveness and sustainable supply chains in China," Energy Policy, Elsevier, vol. 65(C), pages 270-274.
    20. Sarkar, Sumit & Bhala, Shrey, 2021. "Coordinating a closed loop supply chain with fairness concern by a constant wholesale price contract," European Journal of Operational Research, Elsevier, vol. 295(1), pages 140-156.
    21. De Silva, G.P.D. & Ranjith, P.G. & Perera, M.S.A. & Chen, B., 2016. "Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: Implications for deep earth energy extraction," Applied Energy, Elsevier, vol. 161(C), pages 24-40.
    22. Troncoso, Karin & Soares da Silva, Agnes, 2017. "LPG fuel subsidies in Latin America and the use of solid fuels to cook," Energy Policy, Elsevier, vol. 107(C), pages 188-196.
    23. Acquah-Andoh, Elijah & Putra, Herdi A. & Ifelebuegu, Augustine O. & Owusu, Andrews, 2019. "Coalbed methane development in Indonesia: Design and economic analysis of upstream petroleum fiscal policy," Energy Policy, Elsevier, vol. 131(C), pages 155-167.
    24. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2021. "What is the optimal subsidy for residential solar?," Energy Policy, Elsevier, vol. 155(C).
    25. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, September.
    26. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    27. Hutchinson Emma & Kennedy Peter W & Martinez Cristina, 2010. "Subsidies for the Production of Cleaner Energy: When Do They Cause Emissions to Rise?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-11, April.
    28. Huang, Yuping & Zheng, Qipeng P. & Fan, Neng & Aminian, Kashy, 2014. "Optimal scheduling for enhanced coal bed methane production through CO2 injection," Applied Energy, Elsevier, vol. 113(C), pages 1475-1483.
    29. Zhang, Weihua & Reimann, Marc, 2014. "A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 15-24.
    30. Lim, Jong-Soo & Kim, Yong-Gun, 2012. "Combining carbon tax and R&D subsidy for climate change mitigation," Energy Economics, Elsevier, vol. 34(S3), pages 496-502.
    31. Luo, D.K. & Dai, Y.J. & Xia, L.Y., 2011. "Economic evaluation based policy analysis for coalbed methane industry in China," Energy, Elsevier, vol. 36(1), pages 360-368.
    32. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    33. Kong, Shengli & Cheng, Yuanping & Ren, Ting & Liu, Hongyong, 2014. "A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief," Applied Energy, Elsevier, vol. 131(C), pages 67-78.
    34. Fan, Ying & Mo, Jian-Lei & Zhu, Lei, 2013. "Evaluating coal bed methane investment in China based on a real options model," Resources Policy, Elsevier, vol. 38(1), pages 50-59.
    35. Sarhosis, V. & Jaya, A.A. & Thomas, H.R., 2016. "Economic modelling for coal bed methane production and electricity generation from deep virgin coal seams," Energy, Elsevier, vol. 107(C), pages 580-594.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Lurong & Ma, Ning & Zhang, Wen, 2023. "Multi-stakeholder equilibrium-based subsidy allocation mechanism for promoting coalbed methane scale extraction-utilization," Energy, Elsevier, vol. 277(C).
    2. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    3. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Karen Maguire, 2013. "U.S. Energy Subsidies:Do They Reduce Electricity Generated CO2 Emissions?," Economics Working Paper Series 1402, Oklahoma State University, Department of Economics and Legal Studies in Business, revised Jul 2013.
    5. Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014. "An ethanol blend wall shift is prone to increase petroleum gasoline demand," Energy Economics, Elsevier, vol. 44(C), pages 160-165.
    6. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Xin Li & Jie Zhang & Rongxin Li & Qi Qi & Yundong Zheng & Cuinan Li & Ben Li & Changjun Wu & Tianyu Hong & Yao Wang & Xiaoxiao Du & Zaipeng Zhao & Xu Liu, 2021. "Numerical Simulation Research on Improvement Effect of Ultrasonic Waves on Seepage Characteristics of Coalbed Methane Reservoir," Energies, MDPI, vol. 14(15), pages 1-15, July.
    8. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
    9. Li, Aijun & Lin, Boqiang, 2013. "Comparing climate policies to reduce carbon emissions in China," Energy Policy, Elsevier, vol. 60(C), pages 667-674.
    10. Beltrán, Allan & Alatorre, José Eduardo & Ferrer, Jimy & Galindo, Luis Miguel, 2017. "Efectos potenciales de un impuesto al carbono sobre el producto interno bruto en los países de América Latina: estimaciones preliminares e hipotéticas a partir de un metaanálisis y una función de tran," Documentos de Proyectos 41867, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    11. Dai, Shijie & Xu, Jiang & Jia, Li & Chen, Jieren & Yan, Fazhi & Chen, Yuexia & Peng, Shoujian, 2023. "On the 3D fluid behavior during CBM coproduction in a multi pressure system: Insights from experimental analysis and mathematical models," Energy, Elsevier, vol. 283(C).
    12. Weiling Wang & Yongjian Wang & Xiaoqing Zhang & Dalin Zhang, 2021. "Effects of Government Subsidies on Production and Emissions Reduction Decisions under Carbon Tax Regulation and Consumer Low-Carbon Awareness," IJERPH, MDPI, vol. 18(20), pages 1-17, October.
    13. Jeuland, Marc & Tan Soo, Jie-Sheng & Shindell, Drew, 2018. "The need for policies to reduce the costs of cleaner cooking in low income settings: Implications from systematic analysis of costs and benefits," Energy Policy, Elsevier, vol. 121(C), pages 275-285.
    14. Atkinson, Travis & Preckel, Paul V. & Gotham, Douglas, 2022. "Costs and trade-offs associated with renewable energy policies for Small Island Developing States: Case study for Jamaica," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Lin, Boqiang & Li, Aijun, 2012. "Impacts of removing fossil fuel subsidies on China: How large and how to mitigate?," Energy, Elsevier, vol. 44(1), pages 741-749.
    16. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    17. Yu-Bong Lai, 2004. "Trade liberalization, consumption externalities and the environment," Economics Bulletin, AccessEcon, vol. 17(5), pages 1-9.
    18. Liu, Chang & Lin, Boqiang, 2020. "Is increasing-block electricity pricing effectively carried out in China? A case study in Shanghai and Shenzhen," Energy Policy, Elsevier, vol. 138(C).
    19. Giancarlo Giudici & Massimiliano Guerini & Cristina Rossi-Lamastra, 2019. "The creation of cleantech startups at the local level: the role of knowledge availability and environmental awareness," Small Business Economics, Springer, vol. 52(4), pages 815-830, April.
    20. Grüll, Georg & Taschini, Luca, 2011. "Cap-and-trade properties under different hybrid scheme designs," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 107-118, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222024276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.