IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp595-606.html
   My bibliography  Save this article

Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors

Author

Listed:
  • Ouyang, Minggao
  • Zhang, Weilin
  • Wang, Enhua
  • Yang, Fuyuan
  • Li, Jianqiu
  • Li, Zhongyan
  • Yu, Ping
  • Ye, Xiao

Abstract

Energy conservation is a very important task for the automotive industry. The use of hybrid electric vehicles can improve energy efficiency, thus reducing fuel consumption and carbon emissions. In this research, the performance characteristics of a novel coaxial power-split hybrid powertrain for a transit bus are presented. The power sources are a combination of a compressed natural gas (CNG) engine and supercapacitors. A mathematical model for the coaxial power-split hybrid powertrain is established. Subsequently, an analysis program is developed based on Matlab and Advisor. The parameters are specified using experimental data. Afterwards, a rule-based control strategy is designed and optimized from the viewpoint of energy efficiency. Later, the system performance is evaluated using the Chinese Transit Bus City Driving Cycle and compared to a conventional powertrain. The results indicate that the proposed coaxial power-split hybrid powertrain can fulfill the requirements of the transit bus and enhance the energy efficiency dramatically. Moreover, the average energy efficiency of the supercapacitors was found to be above 97% over the entire driving cycle. Using supercapacitors as energy storage devices for the coaxial power-split hybrid powertrain can effectively recover the kinetic energy during regenerative braking and is a good solution for transit buses that require frequent acceleration and deceleration.

Suggested Citation

  • Ouyang, Minggao & Zhang, Weilin & Wang, Enhua & Yang, Fuyuan & Li, Jianqiu & Li, Zhongyan & Yu, Ping & Ye, Xiao, 2015. "Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors," Applied Energy, Elsevier, vol. 157(C), pages 595-606.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:595-606
    DOI: 10.1016/j.apenergy.2014.12.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915000033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, H.G. & Han, X.J. & Yao, B.F. & Li, G.X., 2013. "Study on the effect of engine operation parameters on cyclic combustion variations and correlation coefficient between the pressure-related parameters of a CNG engine," Applied Energy, Elsevier, vol. 104(C), pages 992-1002.
    2. Cipek, Mihael & Pavković, Danijel & Petrić, Joško, 2013. "A control-oriented simulation model of a power-split hybrid electric vehicle," Applied Energy, Elsevier, vol. 101(C), pages 121-133.
    3. Liu, Jie & Yang, Fuyuan & Wang, Hewu & Ouyang, Minggao & Hao, Shougang, 2013. "Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing," Applied Energy, Elsevier, vol. 110(C), pages 201-206.
    4. Bielaczyc, Piotr & Woodburn, Joseph & Szczotka, Andrzej, 2014. "An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations," Applied Energy, Elsevier, vol. 117(C), pages 134-141.
    5. Donateo, Teresa & Tornese, Federica & Laforgia, Domenico, 2013. "Computer-aided conversion of an engine from diesel to methane," Applied Energy, Elsevier, vol. 108(C), pages 8-23.
    6. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
    7. Alamir, M. & Rahmani, M.A. & Gualino, D., 2014. "Constrained control framework for a stand-alone hybrid (Stirling engine)/supercapacitor power generation system," Applied Energy, Elsevier, vol. 118(C), pages 192-206.
    8. Imran, S. & Emberson, D.R. & Diez, A. & Wen, D.S. & Crookes, R.J. & Korakianitis, T., 2014. "Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels," Applied Energy, Elsevier, vol. 124(C), pages 354-365.
    9. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yanbiao & Dong, Zuomin, 2019. "Optimal control of natural gas compression engine hybrid electric mining trucks for balanced fuel efficiency and overall emission improvement," Energy, Elsevier, vol. 189(C).
    2. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    3. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    4. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    5. Zhu, Wenhua H. & Tatarchuk, Bruce J., 2016. "Characterization of asymmetric ultracapacitors as hybrid pulse power devices for efficient energy storage and power delivery applications," Applied Energy, Elsevier, vol. 169(C), pages 460-468.
    6. Weiwei Yang & Jiejunyi Liang & Jue Yang & Nong Zhang, 2018. "Investigation of a Novel Coaxial Power-Split Hybrid Powertrain for Mining Trucks," Energies, MDPI, vol. 11(1), pages 1-18, January.
    7. Cai, Y. & Ouyang, M.G. & Yang, F., 2017. "Impact of power split configurations on fuel consumption and battery degradation in plug-in hybrid electric city buses," Applied Energy, Elsevier, vol. 188(C), pages 257-269.
    8. Kun Huang & Changle Xiang & Yue Ma & Weida Wang & Reza Langari, 2017. "Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission," Energies, MDPI, vol. 10(2), pages 1-18, February.
    9. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    10. Di Guo & Changqing Du & Fuwu Yan, 2016. "Drivability-Related Discrete-Time Model Predictive Control of Mode Transition in Pre-Transmission Parallel Hybrid Powertrains," Energies, MDPI, vol. 9(9), pages 1-31, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    2. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Vuorinen, Ville & Larmi, Martti, 2019. "A parametric investigation of diesel/methane dual-fuel combustion progression/stages in a heavy-duty optical engine," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    4. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Imran, S. & Korakianitis, T. & Shaukat, R. & Farooq, M. & Condoor, S. & Jayaram, S., 2018. "Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels," Applied Energy, Elsevier, vol. 229(C), pages 1260-1268.
    6. Guerry, E. Scott & Raihan, Mostafa S. & Srinivasan, Kalyan K. & Krishnan, Sundar R. & Sohail, Aamir, 2016. "Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 162(C), pages 99-113.
    7. Xu, Min & Cheng, Wei & Li, Zhi & Zhang, Hongfei & An, Tao & Meng, Zhaokang, 2016. "Pre-injection strategy for pilot diesel compression ignition natural gas engine," Applied Energy, Elsevier, vol. 179(C), pages 1185-1193.
    8. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    9. Jatoth, Ramachander & Gugulothu, Santhosh Kumar & Ravi kiran Sastry, G., 2021. "Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode," Energy, Elsevier, vol. 225(C).
    10. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    11. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    12. Yang, W.M. & An, H. & Li, J. & Duan, L., 2015. "Impact of methane addition on the performance of biodiesel fueled diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 784-792.
    13. Zhang, Wei & Chang, Shaoyue & Wu, Wei & Dong, Lihui & Chen, Zhaohui & Chen, Guisheng, 2019. "A diesel/natural gas dual fuel mechanism constructed to reveal combustion and emission characteristics," Energy, Elsevier, vol. 179(C), pages 59-75.
    14. Artur Jaworski & Hubert Kuszewski & Krzysztof Balawender & Paweł Woś & Krzysztof Lew & Mirosław Jaremcio, 2024. "Assessment of CH 4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio," Energies, MDPI, vol. 17(9), pages 1-18, April.
    15. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    16. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    17. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    18. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    19. Li, Weifeng & Liu, Zhongchang & Wang, Zhongshu, 2016. "Experimental and theoretical analysis of the combustion process at low loads of a diesel natural gas dual-fuel engine," Energy, Elsevier, vol. 94(C), pages 728-741.
    20. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:595-606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.