Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2020.109962
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
- Diglio, Giuseppe & Bareschino, Piero & Mancusi, Erasmo & Pepe, Francesco & Montagnaro, Fabio & Hanak, Dawid P. & Manovic, Vasilije, 2018. "Feasibility of CaO/CuO/NiO sorption-enhanced steam methane reforming integrated with solid-oxide fuel cell for near-zero-CO2 emissions cogeneration system," Applied Energy, Elsevier, vol. 230(C), pages 241-256.
- Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
- Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
- Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Felipe Romero-Perdomo & Miguel Ángel González-Curbelo, 2023. "Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
- Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
- Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
- Bareschino, P. & Mancusi, E. & Tregambi, C. & Pepe, F. & Urciuolo, M. & Brachi, P. & Ruoppolo, G., 2021. "Integration of biomasses gasification and renewable-energies-driven water electrolysis for methane production," Energy, Elsevier, vol. 230(C).
- Mohamed, Usama & Zhao, Ying-jie & Yi, Qun & Shi, Li-juan & Wei, Guo-qing & Nimmo, William, 2021. "Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification to power generation," Renewable Energy, Elsevier, vol. 176(C), pages 366-387.
- Saia, Artjom & Neshumayev, Dmitri & Hazak, Aaro & Sander, Priit & Järvik, Oliver & Konist, Alar, 2022. "Techno-economic assessment of CO2 capture possibilities for oil shale power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
- Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
- Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
- Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Feasibility of semi-pilot scale up-flow anaerobic sludge blanket fixed-film reactor for fermentative bio-hydrogen production from palm oil mill effluent," Renewable Energy, Elsevier, vol. 212(C), pages 612-620.
- Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
- Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
- Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
- Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
- Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
- Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
- Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Fonder, Michaël & Counotte, Pierre & Dachet, Victor & de Séjournet, Jehan & Ernst, Damien, 2024. "Synthetic methane for closing the carbon loop: Comparative study of three carbon sources for remote carbon-neutral fuel synthetization," Applied Energy, Elsevier, vol. 358(C).
- Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
- La Guardia, Marcello & D'Ippolito, Filippo & Cellura, Maurizio, 2022. "A GIS-based optimization model finalized to the localization of new power-to-gas plants: The case study of Sicily (Italy)," Renewable Energy, Elsevier, vol. 197(C), pages 828-835.
- Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
- Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.
- Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
- Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Yun, Yeo-Myeong & Sung, Shihwu & Kang, Seoktae & Kim, Mi-Sun & Kim, Dong-Hoon, 2017. "Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading," Energy, Elsevier, vol. 135(C), pages 294-302.
- Savvas, Savvas & Donnelly, Joanne & Patterson, Tim & Chong, Zyh S. & Esteves, Sandra R., 2017. "Biological methanation of CO2 in a novel biofilm plug-flow reactor: A high rate and low parasitic energy process," Applied Energy, Elsevier, vol. 202(C), pages 238-247.
- McDonagh, Shane & Deane, Paul & Rajendran, Karthik & Murphy, Jerry D., 2019. "Are electrofuels a sustainable transport fuel? Analysis of the effect of controls on carbon, curtailment, and cost of hydrogen," Applied Energy, Elsevier, vol. 247(C), pages 716-730.
- Tschiggerl, Karin & Sledz, Christian & Topic, Milan, 2018. "Considering environmental impacts of energy storage technologies: A life cycle assessment of power-to-gas business models," Energy, Elsevier, vol. 160(C), pages 1091-1100.
- Krekel, Daniel & Samsun, Remzi Can & Peters, Ralf & Stolten, Detlef, 2018. "The separation of CO2 from ambient air – A techno-economic assessment," Applied Energy, Elsevier, vol. 218(C), pages 361-381.
More about this item
Keywords
CO2 capture and utilization; Thermal power plants; CLC-CLOU; Methanation; Life cycle assessment; Two-stage fuel reactor; Environmental performances;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:130:y:2020:i:c:s1364032120302537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.